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PREFACE

This is an introductory book intended for scientists and engineers who

a-e involved in the construction, design, evaluation, or operation of sonar

systems. Although an effort has been made to provide all of the necessary

background material, a slight familiarity with the theory of probability has

been presumed. In view of the introductory nature of the book, the amount
of material presented has been limited purposely. The expert who !ooks at

the book will no doubt complain about the topics which have been omitted.
For example, the important topic of parameter estimation is mentioned only

briefly. As the late Professor H. A. Wilson said, "It is important for the stu-

dent to learn some facts and to get to understand some methods and funda-

mental principles; if he learns nothing about certain phenomena no harm is

done and he can make up the deficiency in his knowledge at a later date if

necessary." If the book enables the reader to follow the current literature on

signal processing, it has achieved its goal.
The writer wishes to take this opportunity to thank the many people

with whom he has had the pleasure of discussing signal processing. Among

these are Mr. P. G. Redgment and Dr. E. J. Risness, Admiralty Underwater

Weapons Establishment, Portland, England;Professor G. Bonnet and Mr. P. Y.

Arques, Centre d'ttude des Phinomines Aliatoires, Universit6 de Grenoble,

Grenoble, France; Di. H. Mermoz, Laboratoire D. S. M., Le Brusc, (Var)

France; Mr. A. Bruce and Mr. R. Laval, SACLANT ASW Research Centre, La

Spezia, Italy; Dr. C. van Schooneveld, Physisch Laboratorium, Organization

RVO-TNO, The Hague, Netherlands; and Mr. I. Engelsen and Dr. F. Bryn,

Norwegian Defence Research Establishment, Horten, Norway.

The author is greatly indebted to the following scientists who were

kind enough to read critically parts of an earlier draft, point out errors, and

suggest improvements: F. Bryn; T. L. Brownyard, Naval Ordnance Systems
Command; T. K0oij, SACLANT ASW Research Centre, La Spezia, Italy; M.

Moll, Arthur D. Little, Inc.; David Middleton; P. G.Redgment;E. J. Risness;

Captain S. W. W. Shor, USN; C. van Schooneveld; and E. C. Westerfield, U. S.
Navy Electronics Laboratory. He is also greatly indebted to Mrs. Patricia

Nelson, of Applied Research Laboratories (formerly Defense Research Labora-

tory), The University of Texas at Austin, who typed the entire manuscript.
I~*
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The book has been used as the text in a graduate physics course. The

material can be covered, with a few omissions, easily in one semester. Answers
'ire provided for some of ,he problems to provide greater flexibility in the
use of the text for both organized classes and individual study.

The writer is greatly indebted to Captain S. W. W. Shor, USN, and Mr.
Carey D. Smith for the interest they have shown in the work and for many
helpful discussions. The book was supported by Naval Ship Systems Corn-
mand tinder Contract NObsr-93163 with Defense Research Laboratory, The
University of Texas.

C. W. Horton, Sr.
August 1968
Austin, Texas
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Chapter 1

SURVEY OF THE PROBLEM

1.1 Qualitative Description of Signals

In the operation of a sonar system the operator is repeatedly faced with
the problem of detecting a signal which is obscured by noise. This signal may
be an echo resulting from a transmitted signal over which the operator has
some control, or it may have its origin in some external source. These two
modes of operation are commonly distinguished as active and passive sonar,
respectively, Similar situations arise in radar surveillance and in seismic ex-
plorations so that one may draw on all three disciplines for techniques and for
illustrations of the basic principles.

Since there are many ways in which one can think about signal detec-
tion, it is desirable define a few terms to denote special cases. The word
detection will be used when the question to be answered is, "Are one or more
signals present?" When the system is designed to provide an answer to this
question, either deterministic or probabilistic, one speaks of hypothesis test-
ing. The case of a single signal occurs so often that many systems are designed
to provide only two answers, "Yes, a signal is present," or "No, there is no
signal." One can make the problem more complicated by endeavoring to
classify the signal into categories. Decisions of this latter kind will be referred
to as target classification.

Normally a piece of detection equipment is designed to operate in a
fixed mode and the parameters such as integrating time of rectifier circuits or
persistence of the oscilloscope tube for visual detection cannot be changed
readily. There will always be some uncertain signals which the observer will
be hesitant to rejec, or accept. In these cases the operator might have the feel-
ing that if the integrating time of the detector or the persistence of the oscillo-
scope tube were longer, he could reach a decision about the existence of the
signal. This intuitive feeling has been formulated into a theory of detection
by Wald (1950). When one is able to vary deliberately the interval over which
one stores data in the reception system in order to achieve a certain level of
certainty, one speaks of sequential detection.

Frequently it is desirable to determine not only the presence or absence
of the signal but also one or more parameters associated with the signal. The
parameters of interest can vary widely from a simple quantity such as time of

* 2
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2 SIGNAL PROCESSING OF UNDERWATER ACOUSTIC WAVES SEC 1.1

arrival or target bearing to the recovery of the complete wave form. When a

system is designed to recover one or more parameters associated with the sig-
'ar nal, one speaks of signal extractiont

The word signal was not defined and it was assumed that the reader had
an intuitive feeling for the word. Some elaboration may be in order since the
definition of signal is subjective and depends on the application. One may say
that "signal" is what one wants to observe and noise is anything that obscures
the observation. Thus, a tuna fisherman who is searching the ocean with the
aid of sonar equipment will be overjoyed with sounds that are impairing the 2
performance of a nearby sonar system engaged in tracking a submarine. Quite
literally, one man's signal is another man's noise. }

Signals come in all shapes and forms. In active sonar systems one may
use simple sinusoidal signals of fixed duration and modulations thereof. There
are impulsive signals such as those made with explosions or thumpers. At the 1
other extreme one may make use of pseudorandom signals. In passive systems,
the signals whose detection are sought may be noise in the conventional mean-
"ing of the word; noise produced by propellers or underwater swimmers, for
example. It should be evident that one of our problems will be the formula- t
tion of mathematical techniques that can be used to describe the signal.

Although the source in an active sonar search system may be designrad. to transmit a signal of known shape, there is no guarantee that the returned
signal whose detection is sought will be similar. In fact, there are many factors
"which act to change the signal. The amplitude loss associated with inverse
spherical spreading is most unfortunate for the detection system but it does
not entail any distortion of the wave shape. (Incidentally, this happy state of
affairs does not apply to two-dimensional waves except in the far field where
the wave can be approximated locally as a plane wave.) The acoustic medium
has an attenuation factor which depends on the frequency., This produces a
slight distortion of the wave shape and a corresponding change in the energy

spectrum of the pulse. The major changes in the wave form result from acous-
tic boundaries and inhomogeneities in the medium. These effects will be des-
cribed in Sections 1.5 and 1.6.

When echoes are produced by extended targets such as submarines, there
are two distinct ways in which the echo structure is affected. First, there is
the interference between reflections from the different structural features on
the hull of the submarine. This interference leads to a target strength that
fluctuates rapidly with changes in the aspect. Secondly, there is the elonga- -

tion of the composite echo due to the distribution of reflecting features along
the submarine. This means that the duration of the composite echo is depend-
ent in a simple manner on the aspect angle. If T is the duration of the echo
from a point scatterer, and L is the length of the submarine, the duration of
the returned echo will be T + (2L/c) cos 0, where 0 is the acute angle between I

4, 1... . .. l , .- -



SEC 1.2 SURVEY OF THE PROBLEM 3

the major axis of the submarine and the line joining the source and the sub-
marine. c is the velocity of sound in the water. Of course, L cos 0 must be
"replaced by the beam width of the submarine when 0 is near 90W.

A final source of pulse distortion is the Doppler shifts produced by the
relative motions between the source, the medium, the bottom, and the targets.
Since the source, the medium, and the target (or detector in passive listening)
may each have a different vector velocity relative to the bottom, the variety of
effects may be quite large. The magnitude of this effect will be discussed in
Section 1.3.

1.2 Qualitative Description of the Sources of Noise

The noise source that is easiest to describe and to introduce into the cal-
culations is the thermal noise produced in the detection equipment itself.
"Usually the properties of this noise are completely unrelated to those of the
signal., In this case the reduction of internal noise in the equipment can be
"attempted without particular regard for the type of signal that will be detected.
In sonar and seismic studies the ambient noise in the wave field is so large that
the internal noise ot the equipment seldom limits the performance. On the
other hand, detection systems utilizing electromagnetic signals are often lim-
ited in their performance by internal noise in the receiver.

There is a source of noise intermediate between internal noise of the
equipment and ambient noise of the ocean. This source results from the mo-
tion of the ship or platform on which the array is mounted through the water..
"The noise field generatet" in this manner depends on the speed of the ship and,
in the case of surface ships, on the sea state. To some extent this noise can be
lessened by a careful choice for the location of the transducer and by proper
design of the covering dome.

The ambient acoustic wave fields in the earth and in the ocean often are
quite energetic and contain a wide range of frequencies. The study of these
noise fields forms an important and necessary prelude to any serious design of
optimum detection systems. In the ocean, for example, one finds, in addition
to the biological sources already mentioned, noises due to wave action at the
surface of the water, noises due to collapse of air bubbles entrained in the
water, and noises produced by meteorological conditions such as precipitation.
In the case of passive detection, these noise fields fimrish the noise background
out of which signa.s must be recovered.

Whenever one engages in active signal detection, the production of the
signal entails a large production of noise background which tends to obscure
the signal. This noise* is particularly difficult to treat because it usually has

*Throughout the book the word noise will be used in its most general sense to mean any-

thing that obscurts the desired signal. This is to some extent a subjective definition but
it is convenient.

-"" ! . -•
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4 SIGNAL PROCESSING OF UNDERWATER ACOUSTIC WAVES SEC 1.2

the same frequency characteristics as the signal, since both the noise and the
signal are produced by the reflection or scattering of the transmitted energy.

, .For example, in sonar the volume, bottom, and surface reverberation are
caused by reflection of the transmitted signal from irregularities in the body
of the water and from the lower and upper surfaces of the water, respectively.
If one endeavors to increase the energy in the returned signal by increasing the
power of the transmitter, these reverberent sources of noise increase propor-
tionately. If one samples the noise as a function of time after the transmission
of the signal, one can see the transition from reverberation noise to ambient
noise very clearly. At the beginning the power spectrum of the returning noise
resembles that of the transmitted signal very closely. As time goes by the
power in the reverberation decreases but the power level of the ambient noise
remains constant and eventually dominates.

An interesting situation arises in seismic exploration which, although it
is not directly related to sonar, furnishes an interesting example of how one
may utilize the properties of the noise in its elimination. The commonly used
source of energy in seismic exploration is dynamite, the explosion of which
produces energy in a wide band of frequencies. The acoustic reflections from
the deep rock strata have a dominant band of energy in the range of 20 Hz to
70 Hz. However, the explosion produces large amplitude low velocity surface I:

j •waves whose frequencies extend from 5 Hz to 20 Hz or so., In the early at-
tempts at exploration, before the existence of this frequency separation was
realized, tC'e detection aid recording systems were overloaded by this low fre- ¶

quency wave, so that there was no sensitivity available for the lower amplitude,
higher frequ ncy signals. The separation of these two overlapping bands of
energy is a relatively simple example of the design of a signal detection system.
In this particujar case an alternate solution may be available, since it is possible
sometimes to separate the two bands of energy on the basis of travel times by
a proper choice of distance between the source and the receiver,

Another source of noise that may be serious is man-made countermeas-
ures. These may be active sources such as prisoners of war running so as to
hide the noise of digging or passive sources such as chaff used as a radir
countermeasure. These noise sources will not be treated here but they can be
analyzed by the same techniques used to study other noises.

1.3 Comparison of Sonar, Radar, and Seismic Parameters

It was mentioned in Section 1.1 that there are similarities between sonar,
radar, and seismic systems of signal processing. Although this is true there are
also striking differences in the media which lead to significant differences in
the methods of signal processing used in these three systems. In this section
the basic physical parameters of the media and of the systems are discussed in

rI



SEC 1.3 SURVEY OF THE PROBLEM

order to focus attention on the critical differences. There is a wide range of
values for many of the parameters so that only representative values are given..

Table 1.1 lists representative values of the chief physical parameters of
the three systems. The designer of sonar and radar systems has a wide choice
in the operating frequencies. but only one value is used in the table in order
not to complicate the presentation. In the seismic system the choice of oper-
ating frequency is limited severely by the attenuation properties of the earth.
Associated with this restriction is the fact that seismic signals arriving at the
detector are broad-band signals while the sonar and radar pulses are narrow-
band.

One striking feature is shown by column 4 of Table 1.1. Despite the
wide range of wave velocities between the three media, the pulse lengths areSsurprisingly similar. This would suggest that the three methods have similar

resolution but this is not true. The seismic method is at a great disadvantage,

first because the operator cannot change his frequency, and second because
the reflection coefficient of the rock interfaces are much smaller than the re-
flection coefficients of sonar and radar targets. The resolution of sonar sys-
tems is inferior to that of radar systems but the reasons are more subtle. First.
the effect of the ocean on acoustic wave propagation is niore severe than the

effect of the atmosphere on electromagnetic waves. Second, the significantly
higher frequencies used in radar systems enables cne to use a wider bandwidth
for the signals. This permits one to do much more signal processing on radar
signals. Third, the effects of Doppler shifts described in the next section de-
"grade the performance of the sonar system by a greater amount.

If a stationary source is used to echo range against a moving target, the
frequency of the returning echo will be shifted by an amount ± 2vf/c where c
is the velocity of the wave in the medium,f is the frequency of the signal, and
v is the radial component of the velocity of the target. If the signal is a pulse
and hence is composed of a band of frequencies, each component is shifted by
this amount. This shift is known as the Doppler Shift. Motion of the source
produces a similar shift in frequency but this can often be corrected for since
the motion of the source is known. In sonar systems this device is called an
Own Doppler Nullifier.

TABLE 1.1
Brief Summary of Representative Sonar, Radar, and Seismic Characteristics

Wave Pulse Pulse Repe- Wave- Size of
System Velocity Pulse Length tition Rate length Mobile Array

m/sec Duration m se- m m

Sonar 1,500 2-200 ms 3-300 0.1 0.3 10
Radar 3x 10 0 1-10tis 30-3,000 2,000-200 0.03 2
Seismic 1,600-7,000 50 ns 80-350 (*) 40-17S -

*Pulse repetition rate in the seismic case affects only the economics of the exploration.

U ,o.



S6 SIGNAL PROCESSING OF UNDERWATER ACOUSTIC WAVES SEC 1.3

S• Table 1.2 shows the effects of target motion on Doppler shiftsfor repre-
• sentative velocities and pulse lengths. If a sonar receiver processes all echoes
S~with one channel, the bandwidth of the receiver must be 20 times as wide as it
•. ,v would be in the absence of Doppler, This will result in a serious impairment

of performance when the signal level is comparable to the noise level unless

one divides the Doppler band by using approximately 20 receiver channels,
each with a bandwidth comparable to that of the signal. Of course, the rela-
tive outputs of these channels can be used to indicate the radial velocity of the

target. In the case of radar, the range of possible frequency shifts encountered
with airplanes is only 0.06 times the bandwidth of the pulse. Thus the re-•
ceiver can accommodate the Doppler shift without seriously increasing the

• noise power.

.. *'TABLE 1.2
] Representative Target Velocities and Doppler Shifts

. ,Target Wave Doppler Bandwidth
•" •System Target Velocity Velocity Shift of CW Pulse

•'m/sec m/see AMl % Af/f %

<_1

i"0

S;onar Ship ±! is 1,500 - 2 0.2
Radar Airplane ±- 500 3 x 108 +-+0.0003 0 01

The sonar, radar, and seismic media all have inhomogeneities. These can -
":'•- - he classified into large scale inhomogeneities associated primarily with the hor-,

izontal stratifications of the earth, water, and atmosphere and sinall scale
inhomogeneities associated with turbulence in the water and air and lithologic
variations in the earth. The interaction between the ocean and the atmosphere '
sometimes produces strong temperaturv gradients in the first few hundred
meters either side of the interface. At times the resulting velocity gradient
produces a wave duct or channel in either the water or the atmosphere which •

can transmit acoustic or electromagnetic waves over surprising distances.
The velocity gradient dcldz in the surface channel for acoustic waves in

the ocean may be as large as 0.3 sec-• while the corresponding gradient for
electromagnetic waves in the atmosphere may be as large as 30 sec-, A more |
useful comparison is the gradient of the index of refraction, n, since this
governs the radius of curvature of the rays. Representative maximum values
are I dnldz 1 = 2X 10U-4 m-f for acoustic waves and I dnldz I = I10-' m7' for
electromagnetic waves where z is the distance from the interface., It can be
shown that when the velocity is a linear function of z, the geometric ray is a
circle whose radius depends on dn/dz and the angle of inclination of the ray.

The relationship is such that for the maximum values of dnldz just quoted

radius of 0ectromapnetic ray 2,0
radius of acoustic ray =2,0

iiI



SEC 1.3 SURVEY OF THE PROBLEM 7

provided the two rays have the same inclination. Since these numbers are near
maximum values, one may only conclude that acoustic rays in the surface
ducts can have significantly greater curvature than the corresponding radar
rays. Actually, surface ducts occur much more frequently in the water than in
the air. The existence of ducts is important both for the eYtcct on range and
also for the effect on ambient noise resulting from sources located at the
surface.

Surface ducting occurs in seismic exploration when high velocity forma-
tions occur near the surface. The effect is so severe in some areas, such as the
Edwards Plateau of Texas, that seismic exploration is extremely difficult.

In the deep ocean the acoustic velocity reaches a minimum in the
SOFAR channel and increases monotonically below this with a velocity gradi-
ent which, in the Atlantic Ocean, is approximately 0.014 sec'. If the iono-
sphere is excluded from the discussion there is no counterpart of the SOFAR
channel in the atmosphere. On the other hand, seismic wave velocity increases
almost monotonically with depth because of the compaction produced by the
overburden. In sedimentary columns the velocity gradient for longitudinal
waves does not vary greatly from the value 0.6 sec-,

The air and the ocean are similar m that each has a temperature micro-
structure that produces local inhomogeneities in the velocity. The size and

j •intensity of these regions of abnormal velocities depend significantly on the
vertical distribution of the horizontal velocity of the medium, the temperature
gradient, and the distance from the air-water interface. However, as a simple
generalization on, may say that in the ocean these "patches" have a charac-
teristic size of 0.6 m and a RMS value of 7 X 10-' for the index of refraction.
In the atmosphere the corresponding values are 125 m and 3 X 10-6. When the
sizes of the patches are expressed in wavelengths, the disparity in size is even
larger., These numbers suggest that the fluctuations in phase and amplitude
caused by temperature microstructure are smaller in the ocean than in the

atmosphere, The attenuation of sonar waves in the ocean is due primarily to
loss mechanisms in the medium and it is only at very low frequencies, a few
hundred Hertz, say, that attenuation by temperature inhomogeneities is
significant.,

1.4 Target Strength and the Sonar Range Equation

The elementary discussion of sonar performance based on an infinite,
homogeneous medium usually proceeds as follows. The source transducer
radiates a wave which produces an intensity IT at the target., The power con-
tained in some area of this wave front is intercepted by the target and reradi-
ated as a new source. Thus the intensity of the returned signal is affected by
the inverse square law if spherical waves and the attenuation two times, once
on the path from the source to the target and on the return path. The returning

7-
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acoustic intensity produces an output power S' at the electrical terminals
of the transducer. At the same time the acoustic noise in the water has some
intensity in the water and a corresponding electrical power N' at the electrical
terminals of the transducer.,

Often the performance of a sonar system can be described approximately
by saying that there is a number M' called the recognition differential such
that if S' > M'N', the target can be detected successfully 50% of the time. It
should be noted that when the acoustic noise intensity in the water is defined
properly the ratio S'/N' is equal to the corresponding ratio of acoustic inten-
sities in the water. When all of the quantities are expressed in decibels, one
has the sonar range equation

M S-N = So + T- 2[20 log r + ar] - N, (1.1)

where

M recognition differential of system in dB
S, = source level in dB at one yard
T = target strength, dB
r = range in yards
a = attenuation in dB per yard
N = noise level in dB
"S = returned acoustic intensity produced by target.

Typical values of the quantities in Eq. (1.1) are T = 15 to 20 dB, So -

100 to 140 dB, N = -40 to -60 dB, and M -5 0 dB. Actual values can deviate
significantly from these illustrative numbers. The attenuation constant, a,
depends on the frequency in a complicated manner, but in the vicinity of I
5 kHz one has a good approximation in the formula a = 0 .0 1J' dB per kilo-
yard when f is expressed in kiloHertz.

The major advantages of Eq. (1.1) are twofold. First, it provides an
easy approximation to the expected range of a sonar system, and second, it
enables anyone who can add and subtract to speak glibly about sonar per-
formance. The major disadvantage is that it involves only the simple average
involved in computing power, All sophistication in signal processing, all un-
known statistical parameters, and all information contained in the signal wave
form are hidden in the term M, the recognition differential.

When one attempts to modify Eq. (1.1) so as to include the effects of
inhomogeneities in the medium and of acoustic boundaries, there is no place
to start and it is necessary to introduce empirical modifications in M. These
arguments make it clear that one cannot study signal processing by starting
with power averages, but instead, one must consider the distribution in space
and time of the acoustic wave fields associated with the signals and the noise.

I"!
- l•.- -
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1.5 Reflect'jn and Scattering from Boundaries

The performance of sonar and seismic systems is impaired by the un-
wanted energy reflected and scattered by velocity discontinuities at the surface
and in the interior of the ocean and the earth. For example, three possible
travel paths are shown in Fig. 1.1 for a source and target in water of moderate
depth. In the case of active sonar there are six possible combinations of these
paths with six different travel times. Even if the water is deep enough or the
bottom reflects so poorly that the path QBT can be neglected, there are still
three possible travel times which can produce interference and wave form dis-
tortion. The ocean surface is usually a very good reflector so that the two
paths QTand QSTtend to give nearly perfect constructive or destructive inter-
ference when the path difference measured in half wavelengths is an integral
number. Thus even a moderate movement of the source Q or the target T will
lead to large variations of the reflection amplitude and wave shape.

When the distance QT is several times the water depth, the travel time

for the paths QT and QBT differ so little that the signals overlap to give fur-
ther amplitude fluctuation and wave shape distortion. Some of the wave
energy penetrates the ocean bottom and is lost. The energy that is reflected
can be divided into two parts. One part may be associated with a specular re-
flection from an average plane surface which preserves a wave pattern that is
coherent in space and time. The remaining energy is distributed in a stochastic
wave field which has very limited coherence in space and time. A realistic
view is that each hill and depression on the bottom acts as a small localized
scatterer so that the acoustic wave field at any point is the result of the super-
position of a large number of waves of small amplitude and random phase.
The distribution of energy between the coherent, reflected wave and the
stochastic, scattered wave field depends on the roughness.

Even though the problem of the reflection of waves from a target in a
stratified medium is deterministic in principle, the motion of the source Q and

S AIR

Q WATER

T

B BOTTOM

Figure 1.1-Three possible paths from the source Q to the target T.

I
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the target 1', as well as the roughness of the interfaces, conspire to produce a
stochastic noise field at the transducer as well as a slow variation of wave
shape and amplitude in the received echo.

The preceding discussion was phrased in terms of forward scattering and
the resulting distortion of the target echo. Frequently the backscattering
from the surface and the bottom produces a stochastic wave field of large am-
plitude that obscures the echo. This phenomena is known as reverberation
and is classified as surface and volume reverberation according as the scatter-
ing objects are distributed over a surface or throughout a volume of the me-
dium. It is easy to show that the intensity of surface reverberation decreases
as C- where t is the time measured after the production of the acoustic signal.
This conclusion is misleading, however, since it suggests that the reverberation
level decreases with time more slowly than the returned acoustic intensity of
a given target. Actually the backscattering strength decreases with grazing
angle so that as the time increases the reverberation level decreases more rap-
idly than tC4. Thus at sufficiently long ranges the target echo is obscured by
ambient acoustic noise rather than by reverberation noise.

1.6 Effects of an Inhomogeneous Medium

The nature of the local inhomogeneities in the water was described in
Section 1.3. The local variations of amplitude and phase that result from these
inhomogeneities can be understood most easily by considering the wave front
illustrated in Fig. 1.2. If the direction to the target is determined by measur-
ing the phase difference between the two signals received at hydrophones
located at W, and W2, the indicated direction will be in error because of the
perturbations in the wave front. Further, the size and location of these in-
homogeneities are random functions of time and space so that the measured
value of target direction will fluctuate about the true direction. There will
also be fluctuations in the signal amplitude associated with the deformations
of the wave surface. These fluctuations are equivalent to noise signals at W1  S
and W2 which degrade the performance of any signal processing system.

1.7 Criteria for Measuring the Success of Detection

Now that the pronerties of signals and of noise have been described
briefly it is possible to sketch the problem of determining the best way to re-
cover the signal. One would like to formulate some criterion of success for
this operation for two reasons. First, one cannot decide how to optimize a
system unless .•:ie has i qaantitative measure of success. Secondly, one would
like to judge the performance of an actual system by comparing it with the
performance of the optimum ideal system of the same class. It is evident from
the discussion 'Section 1.1 that there cannot be a single criterion applicable
to all systems.
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WAVE FRONT

DIRECTION OFW PROPAGATION

•W2

Figure 1.2-The acoustic wave front in an inhomogeneous medium. The
shaded (unshaded) regions have temperatures above (below) the average
value.

The peak amplitude of the signal response is frequently used as a param-
eter to judge the performance of a system. In this case one designs a system
which will maximize the ratio of the peak amplitude of the signal to the root-
mean-square amplitude of the noise. Another criterion frequently used in-
volves the ratio of the energy contained in the signal to the noise energy con-
tained in a specified interval of time. In this case the ratio of the energy in the
signal to the power per Hz contained in the noise is maximized. Again one
may desire the recovery of a wave form so that the criterion that is applied is
a measure of the difference between the input wave form and the output.

If one has designeci a detection system whose output consists of an
assertion regarding the presence or absence of a signal. one wishes to evaluate

- " I - .i' . -
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the performance by some measure of the correctness of the decision. There
are two ways in which the decision can be wrong. The system can assert that
a signal is present when in fact there is none, and a system can indicate that a
signal is not present when one is present. A simple criterion that is often used
is obtained by assigning a cost or loss to each kind of error. The design of an
optimum system is obtained by minimizing the aierage loss. This criterion
may be generalized by introducing in addition costs for the two correct deci-
sions of deciding that a signal is present or that a signal is absent. Alternately,
one may not wish to assign costs explicitly but simply calculate probabilities
of detection and of false alarms and state operating conditions in terms of
these quantities.

It is clear that one cannot optimize the various processes described above
without assigning some limitation to the classes of signals, noise, and systems
considered. For example, one may specify the properties of the signals that
are considered and th. nature of the noise and then design a system that will
"be optimum according to a specific criterion. In order to carry out such an

analysis a limitation on the class of systems that will be considered must be
introduced. If only linear systems are considered, one can obtain the optimum
for this class of systems. On the other hand, if the investigation is enlarged to
include nonlinear systems, one would expect to obtain a better system pro-
vided the linear systems first considered are a subset of the larger class of non-
linear systems. Consequently, in order that an optimization process be mean-
"ingful on, must state with exactness the nature of the signals and the noise,
specify criterion of performance that will be utilized, and stipulate the class
of systems over which the optimization will be carried out. A change in any
one of the four elements of the problem may lead to new conclusions.

There are several criteria that are regularly applied to the evaluation of
a detection system. One may define a signal-to-noise ratio and maximize this

ratio or define a loss for the detection system and minimize it. Sometimes it

is possible to calculate a posteriori probabilities and select the hypothesis
which has the largest a posteriori probability. In connection with the discus-

sion of a posteriori probabilities, Section 5.1, it will be found that a simpler
detection system can be defined in terms of an alternate concept, the likeli-
hood function. The performance of the system can be evaluated in a realistic
manner on the assumption that a signal is present when the likelihood function
exceeds a p, ese threshold. One can also define suitable quantities to which a
least-squares test can be applied. These criteria are not mutually exclusive.
For example, cost functions can be chosen which lead to a least-squares fit or

to a maximum signal-to-noise ratio.

1.8 Directional Arrays

In the discussion so far it has been tacitly assumed that the signal and
noise are scalar quantities which constitute the input to the system and that
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the only operations permissible are those that can be applied in the time do-
main or the frequency domain. This is not true since the signal arrives in the
form of a wave propagated in a medium-water for underwater sound, water
or earth for seismic waves, and air, water, or earth for electromagnetic waves.
This fact enlarges substantially the problem of designing an optimum detection
system since one may utilize the spatial dimensions of the sensors to discrimi-
nate against noise. In the case of underwater sound the introduction of the
transducer array produces a serious conflict for the designer. S.nce the attenu-
ation per unit travel distance in water increases with the frequency of the
signal, the range of a system can be increased by decreasing the operating fre-
quency. This change, however, will degrade the directivity pattern of the
transducer unless its physical dimensions are increased at the same time. Usu-
ally the physical dimensions of the transducer are already limited by some
external constraint so the desire to increase the range is foiled. Some of these
limitations can be avoided if one is willing to use nonlinear processes such as
the time averages of products in the detection system., However, it turns out

-. ,, -that this improvement is obtained at the expense of wider bandwidths in the
signal or longer integrating times in the detector. These changes lead eventu-
ally to reduced sensitivity in the transducer or reduced search rate, which in
turn reduce the effective range. Thus one is led to expect that the restraints
imposed by the medium and the platform lead to a true maximum in the per-
formance of the system which can be established by a suitably clever analysis.

1.9 Suggestions for Further Reading

The best introductory work on signal processing is the book by Wood-
ward (1953). The article by Siebert (1956) is not elementary but it gives an
interesting survey of many aspects of the problem. The book by Helstrom
(1960) has a fair amount of mathematics but it is extremely readable. The
article by r' dleton and van Meter (1956) is excellent in its own right and it
is a good introduction to the monographic book by.Middleton (1960). The
latter text answers a surprisingly large fraction of the questions that one needs
to ask about the theory of signal processing. A later book by Middleton
(1965) provides material that is supplementary to the earlier and larger book.

In addition to these general treatises the reader is referred to two sym-
posia held in 1964 and devoted primarily to signal processing in underwater
acoustics (Bonnet, 1964b, and Tucker, 1964). Although the papers are in-
tended for specialists they form a good introduction to the subject matter and
provide extensive bibliographic references.

There are several excellent books on the physics of acoustic media. The
subject of propagation in the ocean is discussed by Officer (1958) and Tolstoy
and Clay (1966). Propagation ina layered media is discussed thoroughly by
Brekhovskikh (1960). Propagation through an inhomogeneous medium is

7-W
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analyzed by Chernov (1960), and the scattering of waves by a rough surface
is summarized extensively by Beckmann and Spizzichino (1963).

The reader should refer to the papers by Faure (1964) and Middleton
(1967) and the book by Ol'shevskii (1967) for a discussion of reverberation
and for references to other work on this subject. The use of arrays for acoustic
transmission through a noisy ocean is discussed by Clay (1966). References
to geophysical applications are described in three special issues of Geophysics
edited by Van Melle (1964a, 1964b) and Flinn (1967). The reader may also
refer to a paper by Capon et al (1967) for the application of signal processing
to seismic arrays.

PROBLEMS

1.1 A formula for Doppler shift may be calculated easily from a model in
which two men stand on the bank of a river. The velocity of the water in the
river may be thought of as the wave velocity in the medium. One man, A,
who is located upstream throws corks into the river at equal time intervals T,
which may be thought of as the period of the source. The other man, B, who
is located downstream measures the time interval T' between the successive
passages of corks. T' is the period of the received wave. If the men do not
move, T T'and there is no Doppler shift. Let vAand v. be the magnitudes %
"of the velocities of the two men.

(a) Use this model to calculate the Doppler shift when v 0 and
vB is directed downstream.

(b) Modify this model to explain the Doppler shift of the returning
echo when the target is moving.

(c) Derive the approximate formula quoted in Sec. 1.3 when
vB/c < I,

1.2 Snell's law states that the angle of incidence, i, and the angle of refrac-
tion, r, of a geometric ray are related by V2 sin i = V, sin r for the Model in Fig.
1.3., A medium whose velocity is a function of depth, c = cqz), can be approxi-
mated by a sequence of layers each of thickness h and velocit c1 , c2 ,...- as
in Fig. 1.4.

Set up a recurrence relationship for the angles, in, of the geometric ray,
and carry out the limiting process as h -- 0. Show that when the velocity func-
tion c(z) is continuous, one obtains

x(z) x(0) + sin io d

-sin

I., -___.-
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r

Figure 1.3-111ustration of Snell's Law.
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Figure 1.4-Ray propagation in a stratified medium.

as the equation for the ray path. In this equation c(O) = velocity at z = 0 and
i, is the angle between the tangent to the ray and the z-axis at z = 0.

1.3 Use the result of Problem 1.2 to show that ray paths are circular arcs
when c(z) = c, + gz; co and g are constants. Express the radius of the circle
and the coordinates of the center in terms of c0, g, and i,.

1.4 Assume in Fig. 1.1 that the source Q is 10 m below the surface and the
target T is 110 m below the surface. A pulse 2 ms in duration is transmitted
and two echoes are received. If one echo travels by the path QT and returns
by TQ while thar ov-r echo travels by the path FT and returns by ISQ, what
is the largest h( ,ontal range between Q and T at which the pulses do not
overlap? Use c 1,500 m/sec.

* • 0

-- - - - - - - - - - - - - - -s--- --
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1.5 Use Eq. (1.1) to calculate the range at which a target can be detected
50% of the time for the values M = 0 dB, So= 110 dB, T= 10 dB, a = 0, and
N = -50 dB. What is the range when the frequency is 5 kHz and attenuation
is introduced?

1.6 Give a detailed derivation of Eq. (1.1).

1.7 Modify Eq. (1.1) so that it will apply to passive listening.

I



Chapter I1

ANALYTIC DESCRIPTION OF A SIGNAL

2.1 The Fourier Integral

Whether one thinks of the transmitted signal as an electric voltage (or
curient) applied to an electromechanical transducer, the motional current of
ýhe active face of the transducer, or the acoustic pressure produced in the
water, the signal is a real function of time which has a finite duration, finite
energy, and, practically speaking, a finite frequency range. It will be shown
that there is a mathematical contradiction inherent in the last statement. Sup-
pose that the signal is a real function of time which will be denoted E(t).

- .. From an empirical point of view it is clear that any signal produced by an
experimenter must satisfy the condition

E(t) M 0, 1t I> T,; T>0, (2 1)

where T is a suitably large time. This statement follows from the fact that the
equipment has a date of construction and it will be dismantled at some later
date. It will be convenient many times to approximate E(t) by analytic func-

"-'." ~- tions such as exp[-at2 ] or exp[-at] which do not satisfy Eq. (2.1). Conse-

quently, it is not desirable to restrict the discussion by imposing the restriction
(2.1).

One can introduce a less restrictive condition on the fuhction E(t) that
has considerable mathematical merit and which can be justified from physical

considerations. If E(t) is an electric voltage in volts that is developed across a
one ohm resistor, the energy dissipated in the interval of time At seconds is
approximately one mho X E2(t)At joules. The approximation becomes better
as At becomes smaller provided E(t) is continuous in the interval At. Conse-
quentlv the following discussion will be restricted to signals E(t) that satisfy
the restriction

+ 00

J E2(t)dt is bounded. (2.2)

It will be assumed that the reader has some knowledge of Fourier trans-
forms so that it is necessary only to describe the notation that will be used and

17
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list a few of the principle formulas. The standard reference is Titchmarsh
(1959), but this book requires considerable mathematical maturity on the
part of the readef A more elementary but excellent account may be found
in Guillemin (1949). This book, like all of his other books, is pleasant to read
and is ideally suited for scientists with a background in engineering or experi-
mental physics.

It is desirable to use a notation for Fourier transform pairs that enables
one to associate them immediately, One convention frequently used is that
followed by Titchmarsh who uses the lower case letter, say e(t), for the func-

4 "tion and the corresponding upper case letter, E(t), for the transform. How-
ever, it will be found desirable to save upper case letters for special usages so
the practice of Beran and Parrent (1964) will be followed. A circumflex will
be used to denote the Fourier transform of any function. Thus e(t) and E(f)
are the Fourier transforms of e(t) and E(t), respectively.

The following statement is a paraphrase of theorem 23 of Titchmarsh
(1959). If a complex function E(t) is such that

+7.li IE(t) Idt<
T.*

and it is continuous for all t, the.e exists a function E(J), called the Fourier
transform of E(t), such that

4%. +00

E(t)f 4 (f) e+i21ft df (23)

-00

and

+ 00
ff()=f E(t) e4-2•ft dt. (2.4)

-00
The condition of continuity can be relaxed to one of a countable number of
discontinuities of bounded variation. At any point of discontinuity of E(t),
Eq. (2.3) must be replaced by

+0

2{E(t+0) -/(-O)} = f E(f) e+i2wft df (2.5)

This situation will arise, for example, if one calculates the Fourier transform
ofa dc pulse E(t)= 1, It I< T/2,E(t)=0, It I> T/2.

A short table of Fourier transforms is given in Appendix 2.1.,
The integrals in Eqs. (2.3) to (2.5) may be interpreted as ordinary (im-

proper) Riemann integrals familiar to all students of calculus. They are valid,

4. .?
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however, if interpreted as Lebesgue integrals. The nature of Lebesgue integrals
will be discussed briefly in Section 4.2.3.

One will notice that the exponentials in Eqs. (2.3) and (2.4) contain a
factor 27. This factor is distributed differently by different authors so that a
minor confusion sometimes arises. Some mathematicians prefer to emphasize
the symmetry by distributing this factor as 1/2i•'in front of each integral.
In books that stress engineering applications the variable f is sometimes re-
placed by cw/27. In this case a factor l/2n occurs in the right member of Eq.
(2.3). One also finds in some engineering texts that i has been replaced by j.

One of the primary interests in this book is the study of real signals E(t).
When E(t) is real, one sees from Eq. (2.4) that E(f) will be real if E(-t) =E(+t),
a condition that is not generally satisfied. Also, E(j) will not vanish for all
negative frequencies for real pulses.

There are two formulas that will be used~frequentqv. If E(t) and G(t)
are two functions which may be complex and if E(f) and G(f) are their Fourier
transforms, one has the Parseval formula (see Titchmarsh, p. 50)

+00 +00

f E(f)G*(J)df f E(t) G-(t) dt, (2.6)
00 -00

where the asterisk denotes complex conjugate. The Fourier transform of the
product E(t) G(t) can be shown to be the convolution of E(J) and G(f); thati .J is the Fourier transform of E(t) G(t) is given by

+00

EEt)fV,) G^-f I) df 1  (2.7)f f00
This equation may be considered as the definition of E(f) G(J). A converse
formula is valid for the function whose transform is E(j) G(f).

When the signal E(t) is real, Eq. (2.6) implies

+M0 +00f E2(t)dt = f IJ) 2 df. (2.8)

Titis result can be interpreted in a most useful manner. If E(t) is thought of as
a potential difference in volts developed across a one ohm resistor, the integral
on the right of Eq. (2.8) beccmes, when multiplied by one mho, the total
energy dissipated in the resistor.. Consequently, one is tempted to interpret
the integrand on the right as foll'-vs:

1 mho X I •(J) 12 Af = energy dissipated in the frequency band
Sff+ AJ)

(2.9)
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where j is a value, f <i. f + At', dictated by the theorem of the mean. Equa-
tion (2.9) is an assumption that is justified on the heuristic grounds that it
gives results in agreement with experiment, but, in principle, any quantity
could be added to the left of Eq. (2.9) so long as it did not change the value of
the integral in the right member of Eq. (2.8). The function I E(f) 12 will be
called the energy spectrum of the signal. The reader should note that it is de-
fined for negative as well as positive frequencies.

Since the integral on the right side of Eq. (2.3) must be real for real sig-
nals, one concludes that

E(-f) = E*(f) (2.10)

and

I!f(-j) 12 = JE(J) 2. (2.11)

"I, •This shows that the distribution of energy versus frequency is symmetric about
f = 0, and one may, in discussing the energy of real pulses, restrict the discus-
sion to positive frequencies by adding a factor of two to the left member of
Eq. (2.9).

2.2 Application of the Fourier Integral to Linear Networks

The Fourier integral will be used most extensively in the following work
so it may be well to develop a few of its consequences. This will not only il-
lustrate the transform relation but will provide results for future references.
A common device in electronics is a linear network such that when an input
voltage Ei exp(+ iwt), w = 21rf, is introduced at the input, as in Fig. 2.1, an
output voltage E, exp(+ ihot) results which is related to the input by

Eoe+t2 ft r Yi(f)Ee`'21ft , (2.12)

a relationship that must be defined for all!f The reader will note that Y(t) is
a dimensionless quantity. It is possible and not uncommon to build devices
other than lumped constant networks that perform linear operations on E,(t)
which can be described by Eq. (2.12). For convenience such devices will be
called generalized networks.

The reader will have noticed that the input voltages in Eq. (2.12) and
Fig. 2.1 are complex quantities whereas it was stated earlier that real signals
were of primary interest. The orthodox attitude in mathematical physics is
that only real quantities can have physical significance. Whenever a complex
quantity such as Ei exp(+ iwt) is used to represent a physical quantity, it is
understood that at all times either the real part or the imaginary part of the

i. .
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Eif (t)TRANSFER FUNCTION iwt,rEi (t)= Eie~i' Eolt) Eoe i+•

S(f)

Figure 2.1 -A generalized, linear network.

complex quantity must be interpreted as the physical quantity., The use of
complex numbers in the analysis is abundantly justified by the greater ease of
the manipulations.

When an arbitrary real signal Ej~t) is applied to the input of the general-
ized network, one may use Eq. (2.4) to resolve the signal into sinusoidal com-
ponents and apply each of these to the input of the network. Since the net-
work is linear, the output is the sum of the outputs for each of the sinusoidal

-• •inputs. One has
+00

Eo(t) = J Y(f)EPV)e+12 7rt df (2.13)

This equation shows that k4(J) E,(J) is the Fourier transform of Eo(t), but
J according to the remark after Eq. (2.7) this means that Eo(t) is the convolu-

"tion of Y(t) and E,(t), or'
,+00

E°(t) = j Y(r)Et-.r) d". (2.14)
-00

It is the quantity E•i() df and not E,{) that has the same physical dimen-
sions as those of Eo(t). Thus if the dimensions of Eo(t) are volts, say, the di-
mensions of E#{f) are volt secoids. The dimensions of Y(T) are second-'.

The generalized network is said to be physicall), realizable if (1) the re-
sponse Eo(t) is identically zero for all t < 0 when EAt) = 6(t), the Dirac delta
function 2 , and (2) the amplitude and argument of the complex function Y(f)
are even and odd functions of f, respectively. The first restriction insures that
one does not violate causality by having an output before there is an input,
while the second condition insures that Eo(t) is a real function of time if Ei(t)
is real.

1 IThe proof of this assertion is not readily apparent from the material presented. A dem-

onstration will be given in the next session.
IThe Dirac delta function will be discussed in the next section.

,• I. "V -
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When Eq. (2.14) is considered in the light of condition (1), it is noticed
that Y(r) must vanish identically for r < 0. This means that Eq. (2.14) may
be written as

Eo(t) = (E-T) dT (2.15)! 0-
whenever the network satisfies the conditions of physical realizability. The
lower limit of the integral is written as 0- to insure that one integrates "across"
the point T = 0. This is necessary since Y(r) may contain a Dirac delta func-
tion, 6(r).

2.3 The Relation between Signal Length and Bandwidth

The existence of Fourier transforms assures one that the shape of a
pulse E(t) and its energy spectrum i E(f) 2 cannot be specified independently.
As an example of this relationship consider a dc pulse whose shape can be ap-
proximated by the error function

E(t) = o 2/ 2r" (2.16)

The total area under this curve is unity and the shape of the curve becomes
more sharply pointed as o approaches zero. If one carries out the integration
required to find the Fourier transform, one obtains

E(f) = e"/(21rf0)2  (2.17)

When Eqs. (2.16) and (2.17) are compared, one sees that they have an inverse
dependence on a. As a is made progressively smaller, the signal E(t) becomes
shorter in time, but the corresponding energy spectrum E(f) becomes broader.
If one defines the time duration T of the signal as the tivne during which
E(t)/E(o) is greater than e-, say, and the bandwidth W of the pulse as the
frequency range over which E(f) is greater than e", one finds

WT 5 1.. (2.18)

Equation (2.18) was derived for the special case of a dc pulse with a
Gaussian shape. The reader will find it instructive to carry through a similar
analysis for the pulse obtained by multiplying the right-hand member of Eq.
(2.16) by cos wot., A short calculation will show that Eq. (2.18) is valid for
this modulated pulse as well as for the tone burst E(t) = cos(cot + 4P), I t I <
T/2, E(t) 0, 1 t I > T/2. Here (D is a constant phase angle.

- ~ -!
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The equality (2.18) is a specializev relation that must be replaced by the
inequality W T,> I when one conriders general pulse shapes. One can define a
time duration T and the bandwidth W for an arbitrary signal aad prove that
W T is greater than or equal to (>) a constant near unity for all pulses. A
demonstration of this statement is given in an interesting paper by Gabor
(1946). Actually the mathematical principles involved are closely related to
the famous uncertainty principle of Heisenberg in quantum mechanics. The
resemblance is not surprising when one remembers that in quantum mechanics
a component of the momentum is the Fourier transform of the corresponding
positional coordinate.

The limiting forms of Eqs. (2.16) and (2.17) as u -* 0 areofespecial
interest since E(t) approaches the well known Dirac delta function 6(t). This
is a function that is identically zero for t * 0 and for which

f 6(t)dt = 1, a, b>O (2.19)

Integrals that involve the delta function are easily evaluated since

f flt)6(t)(dt = f(O) , a, b > 0 (2.20)
-a

provided f(t) is continuous at t = 0. The reader should note that the dimen-
sions of 6 are sec 1 in this case.

One has from Eqs. (2.16) and (2.17)

lim
o-0 E(t) = 6()

and

• ~ ~lim •(f

o-0 E(f) =I

Consequently, one is tempted to consider S(t) and the constant unity as Four-
ier transforms of one another. Hence, one writes in a purely formal manner

+00

)= f e+i21ft df (2.21)
-00

+00

= j 6(t) e- 2 .ft dt. (2.22)
-00

---.f.- - =- - - -- - - - -- - - - ' - - - r- -
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The arguments leading to these equations were based on an appeal to one's
physical intuition, but clearly, the integral in Eq. (2.21) does not exist i I the
mathematical sense of the word. Nonetheless, these Fourier transforms may
be used in analysis and will give correct answers. The reader who is interested
in learning more about the historical and analytic background of the delta finc-
tion is referred to Chapter V of the book by van der Pol and Bremmer (1950).

As an illustration of the usefulness-of the delta function, let us derive
Eq. (2.14) from (2.13). Replace Y(f) andE1 {J) by their transforms and change
the order of integration. This yields

+00 +00 +00E°(t)f Y(T" )dT, f E{ r2 )dr 2 f e-a2 frf (ri + T) df.

00 -0 -00

The inner integral is the same as that in Eq. (2.21) except that t is replaced by

t - Tj - "2. Consequently, one has (making use of the symmetry of the delta
function)

~+00+0
Eo(t) = Y(rT)dri f E,(T 2 )6('r2 - (t -T, )) dr2

00 -00

By using a slight modification of Eq. (2.20) one arrives at the desired result.

+00

Eo(t) = Y(Tr)Ei(t-Tr)dr.

The generalized linear network in Fig. 2.1 was characterized by the
frequency response Y(j). Needless to say, one could use the Fourier transform
Y(t) equally well. This~function is normally introduced into the analysis ;n a
different manner. Suppose that the input to the network is the delta function
6(t). The corresponding output function h(t) is called the impulse response.
One sees immediately from Eq. (2.15) that when the input function E&(t) =
6(t), the output function E0 (t), which by definition is the impulse response
h(t), is given by

Eo(t) = h(t) = Y(t) (2.23)

Thus one has the important result that the fiequency response Y(j) and the
impulse response are Fourier transforms of one another.

The discussion of the delta function has caused us to digress from the
original topic of this section, namely, the relation between time duration T and

bandwidth W. Ibe connection between T and W given by Eq. (2.18) is typi-
cal of many design restrictions that will be encountered below. If one wishes to
measure the time of arrival of a signal with great precision, one makes T very

E r f-•
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small, but this gain in accuracy is paid foi by the necessity of increasing the
bandwidth. Likewise, if one wishes to measure accurately the Doppler result-

V€ ing from target motion, one must utilize a narrow frequency band W in tle

signal spectrum. This gain in the accuracy of doppler measurement is paid for
with a long pulse. Consequently, as long as one uses simple pulse shapes for
which Eq (2.18) is valid, one cannot make simultaneous, accurate measure-
ments of doppler and range.

The remarks of the last paragraph should be elaborated upon to avoid
misunderstanding. In order to achieve accuracy m the measurement of range
one must use a pulse with a broad frequency spectrum W, but this is not nec-
essarily a pulse that has a short time duration T. Similarly, one can measure
doppler accurately provided the pulse has a long time duration T. This does
not mean necessarily that the signal has a narrow bandwidth W. Both of these
requirements can be achieved at the same time by designing a signal for which
the product W T is large, say 10' to 104. The character of such pulses will be
discussed further in Section 2.5.

"2.4 Hilbert Transforms

The representation of the signal by a real function E(t) is not entirely
satisfactory. First, the mathematical analysis of circuit theory can be carried
out more readily with complex analytic functions than with real functions.
"Secondly, the presence of energy components in the negative band of frequen-
cies is not entirely satisfactory from a physical point of view. Further. Eq.
(2.10) shows that all of the information about the Fourier transforms of a real
pulse is contained in kXJ) for non-negative values of!f For Lhese and other
reasons an alternate representation of the signal has been proposed..

One may associate with the real function E(t) that represents the signal
a second function D(t) . , that E(z) + iE'(z) is an analytic' function of the
complex variable z = t , Further, this association may be achieved in such
a way that the complex fl-nc, ion E(t) + i0(t) of the real variable t has a Four-
ier transform which vanishes for negative frequencies. In order to show how
this can be done, make use of Eq. (2.10) to rewrite Eq. (2.3) as follows:

E(t) = 2 Real j (f)e+12
?rft df. (2.24)

0

If one expresses E(f) in polar form, say

E(f) = A$ (,) e10U , ('2.25)

where A(J) and W(f) are real functions, Eq. (2.24) may be written

,- >..
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E(t) = 2f A(j) cos [ 21rft+ 0(f) I df,. (2.26)
0

One may use this representation as a guide in forming the associated
signal EP(t). One may consider a hypothetical network which will shift the
phase of each frequency by 900 without changing the amplitude A(f). The
output of this network, designated El(t), is

Ei(t) = 2J A(O) sin [ 2rft + q (f) ] df. (2.27)
0

Any detection system, such as the human ear, which is not sensitive to phase
will respond to E(t) and EY(t) in the same manner so that to this extent they
are the same signal. When the two signals E(t) and E'(t) are combined, one
has the complex signal

E(t) = E(t)+iEi(t) = 2f A(f)e+a2.ft+io() df

0

= 2f E(f)e+i2,dt df. (2.28)

0

The evaluation of the Fourier transform of e (t) will be carried out in
detail since it will furnish another example of the use of the delta function.
When Eq. (2.28) is substituted into Eq. (2.4), one obtains

Y() e (t) e-12lrft dt

+00

=2f dt f 00  )e+l27rf t-i27rft df1

-00 +0

020 ) d +, e+t21r(f -ft dt.
0 -00

It has been assumed in the last step that the change in the order of integration
is permissible. When the second integral in the last member is compared with

II

-i- ,-
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Eq. (2.21), one sees that this integral is 6(ffz-f). Hence, one has

2 = 2 E(f.)6(f,-J) df .
0

If f is negative, the delta function vanishes throughout the entire range of
integration. On the other hand, if f is positive, the integral is readily evaluated.
Thus one has

Z0E(f) iff>O0

" (I) = E(0) iff=0 (2.29)
0 if!f< 0

It is not apparent from the preceding analysis, but Titchmarsh (1959)
"proves that the two functions E(t) and Ei(t) are Hilbert transforms of one
another. By definition this means that

+00
Ey(t)__• J E(i• dttt (.0

IT I i (2.30)
J -
-00

and

+ 00

IT f (2.31)
- (--t

The bar through the integral sign indicates that Cauchy's principal value is
understood. This means that the improper integrals are evaluated as

1-f L.,0=lira + ,

120 t0

A brief table of Hilbert transforms is given in Appendix 2.2.
Born and Wolf (1959) and others refer to E(t) + iEi(t) as "the analytic

signal belonging to E(t)." It is well known that if E(t) is composed of a narrow
band of frequencies centered about f, (and, of course, a similar band centered
about -fo), it is useful to represent it in the form

E(t) = E0 (t) cos I 2irfot + t(t)

t '
-. t I -
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where E,(t) (;' 0) is referred to as the envelope of the signal. Born and Wolf
show that

,E(t) = [E 2(t) + [E(t)] 2] Y2

An interesting paper by Cron and Nuttall (1965) shows how one may use
the Hilbert transform to calculate the distortion of a wave reflected from an
acoustic bottom at incident angles more grazing than the critical angle. The
examples in their paper are an excellent supplement to the material presented
heie.

The importance of Hilbert transforms in analysis is not generally realized.
As an example it might be mentioned that they are also used in the theory of
dispersion relations of quantum mechanics (see pp. 6-11 of Screaton, 1961).

In summary it might be well to point out some of the advantages and
disadvantages of the Hilbert transform. On the credit side is the fact that there
is an elegant expression for the envelope of a narrow-band signal., Also, if one
wishes to discass doppler shifts, there is a great advantage in having only posi-
tive frequency components in the analytic signal. On the debit side is the fact
that a second funcLion,EI(t), is introduced in the analysis which in many cases
must be generated internally in the signal processing equipment. It is at this
point that an extensive knowledge of Hilbert transform theory on the part of
the designer may lead to significant simplifications in the circuitry, It must be
remembered that if one carries out an analysis of a system by transforming to

analytic signals, one must also transform the expression for the background
noise to the equivalent analytic representation.

2.5 The Ambiguity Function

It was pointed out above that simple pulses could be designed to give

guod iange resolution or good doppler resolution, but not both. However. it
is possible to introduce complications into the pulse structure so that range
and doppler can be detected simultaneously. The suitability of a given pulse
for the resolution of both range and doppler can be discussed with the aid of

a function called the ambiguity function. The motivation for this definition
cannot be appreciated fully until the concept of a matched filter is discussed
in Chapter VII.

The significance of the ambiguity function for echo ranging was first
pointed out by Woodward (1953). The motivation behind the definition of
the ambiguity is discussed in some detail by Price and Green (1960). The
present discussion will be limited to a definition and a brief statement of a
few of the properties of the ambiguity function. Since doppler shifts will be
introduced, the analysis will be slightly easier if one utilizes the analytic func-
tion t(t) rather than the real signal E(t) in order to avoid the complication of -

i . .. . .. . .
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negative frequencies. Suppose that the amplitude of the signal E(t) is adjusted
so that

+ 00

f 0 I' f . (2.32)

0

It might be noted that this integral gives twice the energy associated with the
real signal. The reason for this is that the addition of a second signal in quad-
raturc doubles the energy.

When the signal E(t) is reflected from a moving object, there will be a
doppler shift fd in the frequency components, and since one is not certain of
the exact time of return for the signal, one should introduce a delay in the time
"of arrival of the signal of amount rd. When these two shifts are introduced,
the spectrum of the analytic signal becomes

" (f + f) e-,2,.frd

Suppose now thfat this shifted and delayed signal is detected with a filter whose
frequency response is ý *(0). the complex conjugate of• (f). It will be shown
in Section 7.2 that this is the response of a filter which maximizes the signal-
to-noise ratio when the background is a white noise. The output of the filter
is a function of time but attention wdl be fixed on the value at I = 0, since, as
"shown below in Section 7.2, the maximum value of the signal-to-noise ratio
occurs at t = 0. The output of the filter is given by Eq. (2.13) when t = 0.
Since we are concerned with an analytic function, the output will be a com-
plex number. Hence, the ambiguity function is defined as the square of the
absolute value of the output of the filter, i.e.., the ambiguity function0,2 is

00

,2(Tf) f (f +fd) r- 12 frd df 12 .. (2.33)

0

It is not difficult to show that this integral in the frequency domain can
be replaced by an integral in the time domain to give the equivalent definition

+ 00

02 (7d, fd) f E (r)E*(r+rd)e-i27rfdrd I2 (2.34)

.- 00

TThe ambiguity function is a measure of the spread of the pulse e(t) in

frequency and time. In fact, the width of the ambiguity function considered
as a function of rd whenfd = 0 is apprcximately the reciprocal of the bandwidth
of the signal, and the width as a function of fd when rd 0 is approximately

," -. " -t -
- -"-- - --,-----
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"the reciprocal of the signal duration. If the signal • (t) is normalized so that
the total energy is unity, one can easily show that

S2(o, 0) = 1 (2.35)

and

+00

JJ • 2(rd, fd)drddfd = 1 . (2.36)

Hence, when one represents the ambiguity function, by a surface over the 7d,

fd-plane, the total volume under the surface is a constant independent of the
shape of the signal.

Figure 2.2, which is reproduced from Fig. 10 of the report by Green
(1963), shows the characteristic functions of a few pulse shapes. In the first
three figures the values of TIW are near unity and there is a single maximum in
the surface '2. The first two figures are self explanatory, The third pulse,
which is a pulse shape similar to E(t) = exp(-at2 ) cos(,ot + bt2 ), can be used
to measure either doppler or range provided the other quantity is known. A

J pulse shape like this is frequently used in measurements of range on stationary
targets.

If one wishes to make an accurate, simultaneous measurement of range
and doppler, it is necessary to devise a signal shape which has an ambiguity
function that is concentrated near the origin. Unfortunately, Eq. (2.36) in

conjunction with Eq. (2.35) insures that this cannot be done unless one pays
the price of having wide skirts on the ambiguity function, secondary maximum
in the ambiguity function, or both. An example of the latter difficulty is
shown in Fig. 2.2(d). In this case, which was analyzed by Woodward (1953),
the short pulses of Fig. 2.2(b) are repeated at regular intervals. The envelope
of the pattern is gaussian. The resulting ambiguity function has a beautifully
sharp peak at the origin so that range and doppler can be measured simultan-
eously with great accuracy. Unfortunately, there are many secondary peaks
whose amplitudes are nit negligible. This pulse shape can be used only when
one knows approximatly he range and the doppler and is able, consequently,
to gate out all but the piiwary peak.

Figure 2.2(e) is an example in which a pseudorand,)m noise of long dura-
tion is used to achieve a sinpje, sharp peak in the ambiguity function. In this
case there is a single maximum but this peak is surrounded by a high level
skirt. This skirt will not c. use serious trouble if the target has a well defined
range and doppler. It will be noted that the signals (d) and (e) both have a
large TW product and that the accuracy of measurement increases as the TW
pioduct increases.

0'

I . . . . . . . . . . ." . . . . £ . . : . . . -. .. .. .
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WAVEFORMS AMBIGUITY FUNCTIONS

T-W.I/T

(a) LONG PULSE (TW-1)

f

-/T(b) SHORT PULSE (TW =)

-4l,--/*• (C) SWEPT-FREQUENCY PULSE

-4, IAJ I/W

Si/(d) LARGE-TW PULSE TRAIN2/6I

TE
- - - *-I/T

2Wj - /: (e) PSEUDONOISE (LARGE-TW

,w CONTINUOUS WAVEFORM)

T r___2T"

Figure 2.2-Ambiguity functions of typical gaussian-shaped pulse waveforms
reproduced by courtesy of Lincoln Laboratory.

When a target is broad in range and doppler, the skirts of pulse (e) and
secondary lobes of pulse (d) lead to a form of self noise. Pr'ce and Green de-
fine a scattering function which in effect resolves the echo into range and
doppler increments and show that the total signal received is the convolution
of the ambiguity function and this scattering function. When the scattering
function is spread in range and doppler, the unwanted features in the ambigu-
ity function contribute significantly and uadesirably to the received signal.
An example of a target spread in range is a complex target which is large com-
pared to wavelength and which may be considered as an assemblage of discrete
scatterers, If, as the target changes aspect, target strengths of the individual

U . -
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scatterers change rapidly, one has a target that is spread in range and
doppler.

The nature of the ambiguity function is important in the study of vol-
ume and surface reverberation. The source of reverberation is scattering from
objects which are distributed in range, and which, especially in the case of
volume reverberation, m3:, Ne distributed in velocity.

An interesting paper by Lerner (1958) discusses the question of design-
ing pulses with large value of TW which have desirable ambiguity functions.
He discusses also the use of a binary shift register to produce pseudorandum
noise pulses.

2.6 Suggestions for Further Reading

A working knowledge of the simple properties of the Fourier transforms
will be necessary for many of the topics discussed below. This material is
available in many places. The books by Guillemin (1956) and Titchmarsh

J )(1959) provide excellent accounts both of Fourier and Hilbert transforms at
two very different levels uf mathematical sophistication. An extensive table of
Fourier transforms was compiled by Campbell and Foster (1931). Tables (;f
Fourier, Hilbert, and other tiansforms are given by Erd~lyi (1954).

Good accounts of the Hilbert transforms are not very common. In ad-
dition to the references of the last paragraph one can refer to Born and Wolf
(1959) and Beran and Parrent (1964). These two accounts are concerned with
electromagnetic waves but the reader can apply their comments and formulas
to the acoustic case. The importance of Hilbert transforms in the field of
"acoustics is certain to increase. The paper by Gabor (1946) is fundamental

and should be read carefully. The reader is also referred to a report by van
Schooneveld (1963).

The ambiguity function is another topic whose importance for under-

water acoustics will increase steadily. In addition to the writings of Woodward
(1953), Lerner (1958), and Price and Green (1960) already mentioned, the
reader should also refer to a paper by Siebert (1956), a paper by Stewart and
Westerfield (1959), and a report by Green (1963).

,.I
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Appendix 2.1

Fourier Transforms

+0 +00

F(t)=f iv) e+2ift df' jE(f)= f F(t) el-,2iitdt

-00

General FormulasF,(I) EU)DJ

(2) a L', (t) + bh 2(t) a F1', + bEl2qf)

(3) 1"'(t) EW(t) t2ML, * E2'(f)

: " "j i•if E2 V-l?•f df,

(4) (i') * , (,t)1 2 f1 (t)2(f)

f E (t Ll.', t-t)dt•

-00

(5) E(ar) 00a>O

a a

(6• (-t) E (-
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Functions

(7) e+i2 nfot 5(f-f)

(8) b(t-to) e-i2lfto

(9) 6(t + At) + 6(t-At) 2 cos 21rfAt

(10) cos 2?fot T ff+fo) + 6(f-f)
(11 V+A +1-

,/ -"t V/- -7

"(12) sin 2 irat f1
2 7 T t -I" I ' < • a

{(1 3 ) rla I t I < 20If I 'a

sin af

(14) eg2t , p < t < q i e'P(u+t) -eiq(u+f)
0 , t <P --"( +f

t > q

( e t)2
I e,.2/4A , ReX>O(15) e-?, 2•t , REX>02 - .: ReVlX> 0

(15a) -t2/2o? e4V(2nfa)

(16) ,. 1

Va -2Ko(a2 fl)
(17) 2 Ko(a I 27t 1) 1, !

fI
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-a. If I

(18) if2
(2n ) 2 ff 1 2

aa P

(20) I t II< a +jo(af)
ja 2 ý-(2ir)

0 ,Itl>a
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Appendix 2.2

Hilbert Transforms

It f IE't') dt' I f E(t1')dt'EEt)ttt d Ei(t) = -I If
_ _- o-o

-00 t- Tj-00

General Formulas

(1) E(a + t) a real E'(a + t)

(2) E(at) a > 0 E(at) J
a < 0 -lg(at)

(3) (a + t) 00) o

(a + t) /9(t) + .-fJE(t) dt•

00fI

(4) E'(t) [E'(t)]'

II-
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Functions

S(5) 1 0

* (6) 0 -oo < t < a I logb-t

1 a<t<b < 
l I7 - t

0 b<t< -

(7) 0 -< t < a 1log aI t 0art a --"t7

t-1  a< t <

a>0

4

(8) 0 -o K t <a 1 log I a 1

St2 a<t< Ioo

a> 0 
t 0

t a

(9) (t + a)- n a > 0i(t+a
•'. .hit a < 0 -i(t + af-

(10) Xt+w Re -at7- j Re a > 0 t2 +a 2

t2 + a2

(11) 0 -_ < t < 0 csc(mr)(-t)v-"<t<O

tg-' 0 < t < ctn(vf) tv'' 0 <t<00

0 < Rev< I

(12) It Iv-' 0 < Re v< 1 -ctn(½vir)sgnl t It

(13) sgnt tIV-1 0< Rev< I tan(½vnr) It I"'

(14) etat a > 0 ieiat

I

1 " 
- C. "1
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ateA2 t2 2
-ea2t2 J er? dr

0

(16) sin(at) a > 0 cos(at)

(17) cos(at) a > 0 -sin(at)

(18) sin(at) a > 0 cos(at)-l
t t

-F-- -It

jf
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PROBLEMS

2.1 Evaluate the transfer function Y(f) and the impulse response h(t)for the
,€ three circuits in Fig. 2.3. Simplify your answers by introducing the time con-

stant T = RC in circuits a and b, and wo0 =1/LC and Q = R/k.oL in circuit c.

R

Eilt) C E0 0t)

a. A LOW-PASS FILTER

C

"E,(t) R Eolt)

b. A HIGH- PASS FILTER

R

Ej~t)L 'C Eo

___Li 1
c. A BAND-PASS FILTER

Figure 2.3-llustrations for the problems.

1 * r 1 .
t . . . . . . . . .. . .
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2.2 A dc pulse Eo(t) defined by
•: Eo(t) = 0, t < 0, t > T,

=E0 0<t<Tl

is applied to the low-pass filter of Fig. 2.3a.

(a) Derive an analytic expression for the output.
(b) What is the ratio of the total energy of the output to the total

energ) of the input if T , = RC/2? For the purpose of this question interpret
total energy as the integral of the square of the voltage.

2.3 In order to specify the frequency response of a narrow-band filter of
bandwidth W it is tempting to assume

Y(f) = I If-f, I< W/2

= 0 , If-fo I>W/2

where fo is the center of the passband.
(a) Give two reasons why this definition for Y(f) is not physically

acceptable.
(b) Show how one of these objections can be overcomne by a change

in the definition of Y(f).

2.4 Cauchy's theorem states that iff(z) is an analytic function in the interior
of and on a simply connected curve C,

I flz)dz

where the closed contour integral is evaluated on the path C in the counter-
clockwise direction. Show how one may utilize this theorem to find the
shape of the pulse E(t) whose Fourier transform is defined by

a+": + i27T(f - fo) a) 7~ ,Sa ii~ff a+12r74f+fo)

where a and f, are positive, real constants.
Hint. Let C be a semicircle with diameter on the real axi, and let the radius
become infinite. There are two cases according as the semicircle is above or
below the real axis

2.5 Calculate the Fourier transform of the unit step function H(t) defined
by 11(t) --- 0, t < 0, and H(t) "-- I, t '> 0.

hint. First evaluate the transform of the approximation Ha(t) 0, t < 0, and
tla(t) = exp(-at), t > 0 and take the limit as a - 0.
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2.6 The limiting process ýescribed in the last problemn produces a shingtlarity
at f = 0 for the function H0(). Can one obtain a correct value H(t) for the
transform by using Cauchy's principal value defined in Eq. (2.31)? If not,
how must one interpret the Fourier integral in order to obtain a correct
answer?

2.7 Evaluate the integral

=1 JJ (6-2x-2v) 6 (y-x 2 ) dx dy

00

2.8 Show that the Fourier transform No. 13 of Appendix 2.1 is a special
case of No. 14

2.9 Derive the Hilbert transform No. 9 of Appendix 2.2.

2.10 Compute the ambiguity function 0 2 for the pulse

E(t) =expf-(at) 2 } cos 21rfdt.

"Construct a model or plot contours for the special values a 1,000 see-'
and a= 10 sec-1

Hint Introduce approximations in the integrals by neglecting the "tails" of
the integrals of the error functions.

2.11 Compute the ambiguity function ý 2 for the pulse

E(t) = exp{4at)2 } [ cos 27 rfo - t + cos 2r (fo +

Compare your answer with Fig. 2.2d.
Itint Use the same approximations described in Problem 2.10.

2.12 A filter response E*(J is associated with a real signal E(t). Similarly,
one can define a second filter response 6*(') corresponding to the analytic
signal ý(t) associated with E(t)., Show that the real part of the output of
E *(f) is equal to the output of E* when the inputs to the two filters are each
equal to E(t).

*1 - - * l~' ~ ~
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Chapter III

ELEMENTS OF THE THEORY OF STOCHASTIC PROCESSES

"3.1 Description of a Random Process

Modern workers in probability theory make extensive use of the theory
oi real variables so that one cannot read their contributions without at least a
"working knowledge of this theory, For this reason a formal definition of a
stochastic or random process will not be attempted until Sec. 3.3. Rather it
will be assumed for the moment that the reader has an intuitive idea of what
is meant by a random process and this intuitive concept will be delineated and
sharpened through examples and discussion. When a physical process yields a
quantity x(t) such as pressure or voltage which changes with time, one can
speak of the resulting function as a time series. When the nature of this time
series is such that one cannot predict with exactness the future values of x(t)
from a knowledge of the past values, one may speak of a stochastic time series.
There are two cases that are of special interest in the present study. One may"observe the function x(t) for a continuous interval of time, say 0 < t < T, or

one may observe x(t) at a regularly spaced sequence of values nAT, n = 0, 1,
2,..., N. Both of these cases are important, but they differ sufficiently that
parallel analyses will be carried out frequently for each case. They will be re-
ferred to as continuous and discrete time series, respectively..

In principle one may observe a time series x(t) for -c < t < +-, but in
practice a finite sample is all that one has for study, One may form the average
of x(t) and of various functions of x(t) over the larfest available sample. This
type of average will be called a time average and denoted with a bar. Thus'

to+ T

Lf x(t) dt (3.1)
S~tod

is the time average of x(t) over the interval to < t < to + T It is clear that
x(t) will depend on both the value of to and of T. If values of x(t) are avail-
able for a time interval large compared with T, one can computc many values
of x(t) for non-overlapping intervals of length T corresponding to different

This notation is inadequate since the duration Tof the sample should be specified in the
left. This omission will be remedied in Eq. (3.10).

42
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values of t.. In this way one can obtain some idea of the evolution in time of
the series x(t). Time averages of any function of x(t) can be defined in a man-
ner analogous to Eq. (3.1).

There is an alternate approach to the analysis of x(t). One can suppose
that the experimental conditions which gave rise to x(t) are repeated in a large
number of almost identical experiments. The variability of the experimental
conditions are chosen to reflect the statistics of the process. For example, if
one wiqhes to analyze the thermal noise developed by a resistor, one can ob-
serve the potential difference across one resistor for a long time or one can
imagine a very large number of similar resistors each at the same temperature
and measure at one instant the potential difference across each resistor. There
is no assurance that the average values obtained in these two manners will be
the same, since one may have, for example, a resistor whose temperature is
changing monotonically with the time.

An analogous situation arises in the case of reflection of sound from a
rough sea oottom. To simplify the discussion it is assumed that the water is
homogeneous and does not change with time, and that the average depth of
the water is constant. Suppose that an acoustic signal is transmitted from a
fixed receiver, reflected from the bottom, received at a detector, and the
amplitude of the signal is measured at a fixed time delay relative to the trans-
mitted signal. One would expect that no matter how many times the experi-
ment was performed, the received signal would have the same value as long
as the conditions did not change., In other words, this is a completely deter-
ministic experiment in which cause and effect should apply without variation.

However, if the source and receiver were moving over an irregular bottom, the
sequence of received amplitudes would constitute a discrete time series. On
the other hand, one could ignore the fact that the series of measurements was
a time sequence and look upon the amplitudes as samples from a large number
of similar experiments. In this case the distinction between a time series and
an ensemble is almost a matter of definition.

The question of the precise conditions that must be placed on a sto-
chastic process so that one can be assured of the equivalence of time averages
and ensemble averages is one of the fundamental problems in the theory of
stochastic processes. This hypothesis of the equivalence between time aver.-
ages and ensemble averages, which is known as the ergodic hypothesis, was
introduced into the scientific literature by Gibbs in his work on statistical
mechanics. This hypothesis will be stated with more precision after some
preliminary concepts have been defincd.

3.2 Distribution Functions and Probability Densities

In a careful analysis of statistical theory it is necessary to distinguish be-
tween a random variable x and a particular sample value X of the random

1i- - _
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44 SIGNAL PROCESSING OF UNDERWATER ACOUSTIC WAVES SEC 3.2 j
variable. This distinction will be made in the first part of the discussion. It is
a distinction that the reader should bear in mind even when the notation is
simplified by its omission.

Suppose that one has a random varitble x whose behavior one wishes to
study. For convenience it is assumed that the range of possible values of x is
(.00, +o) and that from a priori considerations or from observation, one can
establish the probali:lity of x having a value less than X. Thus it is assumed
that onc has a k:iowledge of a function2 F(.) such that

F(X-O) = probability that x <X, -0-< X < +00,
(3.2)

F(X+O) probability that x<X, -- <X<+o-.

The function F(X) is defined to have the following properties:

lim F(X)=0, lim F(X)=+I ,
-•--"X - 0-0 X --,+00"X-•oo(1.3)

R•FX2) -F(X) 1 0 if X, X, .

The first two equations of Eq. (3.3) are an assertion of the scale of values
assigned to F(-). Unity -, adopted as the measure of a certain event. The third
equation is an assertion that as the range of "acceptable" values of x is in-
cre3sed, one carnot have a decrease in the probability of obtaining an "accept-

0• able" value.

The function F(.) is called a distribution function, This function has
interesting mathematical properties, since it need not be continuous nor have
a derivative at every point of its range of definition. For example, suppose
that the value of x is determined by the flip of a bent coin by the rule that
x = --I if a tail turns up and x = +1 if a head turns up. The results of this ex-
periment can be described by a distribution function F(X) with the following
properties. F(X) = 0 for X < -1 since it is impossible for x to have a value
less than -1. F(X) I I for X > I since x is certain to have either the value-I1
or +1 in each experiment. If the probability of a tail occurring on any flip is
p, the distribution function, in accordance with Eq. (3.2), will be defined by
F(X) =- p for -1 4 X < +1. It will be noted that the values of F(X) arc as-
signed so that F(X) is continuous from the right. Thus by definitionF(-l) = p
and F(+I) = 1. This distribution function is illustrated in Fig. 3.1.

2In careful mathematical usage one distinguishes between a specifiw ,valuC of a function
f(x) and the function itsclift.) Ihis notation will be followed when the emphasis is on
the function rather than on the argument of the function.
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If the range of values thatx may have is continuous and there are no iso-
lated values having a probability different from zero, i.e., if it be asslmnied that
F(X) is absolutely continuous, one may take the derivation of F(X), FP(X)
f(X) to get a probability density or frequency function associated with the
distribution. The probability density is related to the distribution function by

x
F(X) f l(y) dy . (3.4)

It is evident that the distribution function is a more general concept
than the frequency function. In general the distribution function can be repre-
sented uniquely as the sum of three distribuLion functions

F(X) = Fa(.X) + Fd(X) + FA(X) (3.5)
VA,

L-. v where

Fa(X) = the absolutely continuous part

Fd(X) = a step function with a countable number of discontinuities.
This is a function that is constant everywhere except at these
steps. An example of such a function is shown in Fig.,3. 1.

"Fs(A) = a singular function, i.e., a function that is everywhere con-
tinuous and has almost everywhere a derivative equal to
zero.

In the examples considered in this bock the distribution functions will not
contain a singular part.

F(X)

-1-
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The reader is aware from the discussion of the delta function that the
function Fd(X) can be described by a frequency function composed cr - sum
of delta functions. Thus in the case of the coin flipping described by Fig. 3.1
one could write formally

fty) = p6(y+ 1) (I -p) 6(y - l)

These ideas can be repeated for a pair of random variables and extended
readily to a large finite number of variables. The distribution function
F2 (X, Y) for a pair of random variables (x, y) is a function such that

F2 (X- 0, Y - 0) probability that x < X and y < Y,
-00<X<+o-o,0e< Y<+oo

F2 (X+O, Y+O) = probability that x 4 X and y Y,
0o0 <,XX< +oo,_0o< Y< +oo. (3.6)

It is required that

lim F 2 (X, Y)= , lim F2(X, Y)=+1
X, Y-+-_oo X, Y--, +oo

The function F2(X, Y) should contain the distribution function F1 (X) and
G I (Y) of X and Y in the sense that

F2(X,+o) = Fi(X), F 2(+-', Y) = GI(Y) (3.7)

The functions F1I(X) and G I (Y) are called the marginal distributions associa-
ted with F2(X, Y). The reader should note that this is not a reciprocal relation
since, in general, FA(X, Y) cannot be determined from a knowledge of FI(X)
and G1(Y).

When one considers N simultaneous random variables X, (i = 1, 2, ... ,
N), one will have an Nth order distribution function FN(XI, Y2 ... XN )
which contains all of the lower order distribution functions as marginal distri-
butions. If the function FN(-) is absolutely continuous in each variable, one
can take partial derivatives to get the corresponding probability densities.

3 3 Random Variables and Stochastic ProcessesA

It was mentioned earlier that the modern theory of probability is firmly
rooted in the theory of real variables, but, unfortunately, this body of mathe-
matics is not familiar to most physicists and engineers. Consequently, if one
endeavors to make statements using this terminology which are simple enough
in form to be understandable intuitively, it is most probable that no one will

*- a -
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be pleased. The mathematical reader will object that the statements are inac-
curate while the physical reader will think they are incomprehensible. Even
so, this difficult path will be attempted. The reader who wishes to pursue the
theory with some rigor is advised to read Cramer's (1946) excellent introduc-
tion to real variable theory,

In the examples of the last section the intuitive concept of the set of
points on the real axis was used to define the distribution function of a single
variable. Actually, this concept can be extended to a general set of points.
The totality of points under consideration constitute a space A3 , A set of
points of this space will be denoted L, and any point will be denoted X. With-
out entering into the details, since this involves measure theory, it is sufficient
to say that (with suitable restrictions) a vrobability measure can be assigned to
each set L of points contained in A. a iis is actually the procedure indicated
in Eq. (3.3), since A is the real line, L is the interval xo < X < x, + x, and X,
is any point of the line.

This brief description may enable the reader to understand the follow-
ing definition of a random variable which is taken from Doob (1953, p. 5).

"A (real) function x, defined on a space of points A, will be called a
(real) random variable if there is a probability measure defined on X sets, and
if for every real number a the inequality x(N) 4 a delimits a X set whose prob-
ability is defined, that is, a measurable X set. Thus

F(a) = probability that x(,) <- a

is defined for all real a. In mathematical language a (real) random variable is
thus simply a (real) measurable function."

This approach may be generalized significantly. Suppose we consider a
function of tCe time x(t) where t may be confined to an interval 0 < t 4 T.,
These functions can be interpreted as the points X of the space A so that the
space A will be the set of all functions x(t) which satisfy suitable restrictions.
This leads to the concept of a family of functions {x(t, X)} where each X de-
termines the function and a probability measure is associated with each set L
of points X. If one restricts the discussion to N sample values x(nAt, X),
n = 1, 2, . .. ,N, thý space A win, nave a finite number of dimensions.

Following Doob again, one can define a stochastic process as any family
of random variables or functions {x(t. X,), teT, eA}, Here we shall think of
x as the random variable, t is the time at which x is observed, T is the range
of values of t open to observation, and X is a point of the space A on which
a probability distribution has been defined. If T, the range of the parameter,
is finite or denumerably infinite, x(t, X) is called a sample sequence rather
than a sample function.

31n the mathematical literature, such as Doob (1953), the Greek letter w is regularly used
for this purpose. It is desirable to reserve w for angular frequency, 2frf.

V -
* -,
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These ideas can be generalized in either or both of two ways. One may
replace t by several parameters, t6, t 2, • •, t., each of which has its range
Ti (i - 1, 2,.. . , n). For example, in discussions of the topography of the
ocean bottom x(ti, t 2 , X) would be a sample function describing the depth x
as a function of horizontal position (ti, t 2 ). Similarly, in discussion of ran-
dom inhomogeneities in the water O(t1, t2, t3 , X) could be the temperature of
the water at the point (ti, ti, t3 ).

The other way of gene-alizing the function x(t, X) is to consider a set of

functions xI(t, X), x 2(t,, ) ,...., x,(t, X). For example, these could be the
simultaneous outputs of n hvdrophones. A speciai case frequently encountereu
in the literature is that of two functions x(t, X) and v(t, X) which aie combined
to form a complex random variable z(t,. X) = x(t, X) + iy(t, X).

If these definitions are unsatisfactory to the reader for any reason, he
may prefer to consider probability distributions that refer to a single sample
x(t). One may say that a stochastic process is any process running along in
time that is governed by probabi'istic laws. The probability laws in this ap-
proach are stated in the form of the distribution function F,(-) for n observa-
tion of the process. Thus if one observes the values xI, x2, • •., xn of the
process at the times t,, t 2 ,. • •, tn, respectively, these values are governed by
a distribution function

Fn( X - 0, t1 ; X2 -0,t 2 ; Xn -0, tn)= probability thatS•. ~x, <X,,i=l1,2,... nj 38

The stochastic process will be completely defined only if the infinite set of
functions F,,('), n = 1, 2, 3 .... is known. Often the experimental evidence
is limited so that only the first two or three functions are known. Any func-

a tion F,(-) contains all lower order distributions as marginal distributions as in
Eq. (3.8).

The two points of view set forth in this section may appear at first
glance to be completely different, but fortunately, they have a great deal in

common for many statistical processes. Historically the two points of view
arose in the development of statistical mechanics. If one has a liter of hydro-
gen molecules, for example, at standard conditions, one can, in principle,
follow the evolution in time of the system and attempt to evaluate the proba-
bility density of position and velocities of the molecules. Alternately, one
can conceive of an infinite number of vessels, each containing one liter of
hydrogen molecules at standard conditions. One can attempt to find the
probability density by determining the position and velocity of each molecule
in each sample at any one instant of time.

The American physicist Gibls introduced the hypothesis that these two
points of view are equivalent and that time averages over one sample are com-
pletely equivalent to ensemble averages over all samples at one instant of time.

- I
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This hypothesis, known as the ergodic hypothesis, has given rise to an extensive
mathematical theory. Unfortunately, the mathematical statements and proofs
of the theorem are not easy to apply to physical situations, and one's physical

intuition is not always a safe guide. This point will be discussed further as the

need arises.
A readable but brief discussion of these ideas is given in Chapter 1I of

Cybernetics (Wiener, 1948). A good account that is a happy balance of phys-
ics and mathematics is given by Khinchin (1949).

3.4 The Concepts of Stationarity and Ergodicity

One's everyday experience assures one that the first order distribution
function FI(X, to) may depend on to. For example, suppose that a signal is
emitted by a transducer and x(t, X) is the instantaneous pressure at some point

produced by the returning reverberation in a single experiment., The range of
values of x(') that one may expect decreases with increasing time. In many

cases this decrease follows a simple law so that by introducing some type of

time varied gain, one can remove this trend and convert the time series to a

new one which is free of this variation There are other time series, for ex-

ample the number of families of cephalopods in existence in any geological

time, which are evolutive and which would lose most of their significance if

the time variation were removed. The distinction between these two cases is
not entirely clear cut, because, for example, even with the addition of suit-

able time varied gain, the reverberation will finally vanish. However, it seems
"reasonable to suppose that samples of the reverberation can be analyzed suc-

cessfully as though they were samples of a stochastic process that continued
forever.

"The time series x(t,, X) will be said to be stationary in the strict sense
when all of the distribution functions Fn(X1 ,. t1 .; X 2, t2 ;... ; X,, tn) are in-
variant under the time shift t -* t + t, for any value to. It will be seen later
that this definition can be weakened and still lead to useful results This is

the reason for the qualification "strict." The example of reverberation given
above makes it clear that real stochastic processes only approximate to mathe-

matical definitions of stationarity, and part of the skill of the statistician is

the ability to judge when the assumption can be applied to the data under
analysis.

One is now in a position to discuss more quantitatively the concepts

introduced in Sec. 3.1, If one has a family of time series{x(t, X)} where t is
the time parameter and X indicates the sample, one has the choice of forming

a time average of one sample over some finite time interval T or of fixing the

time t and averaging over the ensemble parameter X. The latter can be achieved

readily by utilizing the distribution function F(X) to define the ensemble
average of x(t, X) as
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=f(xt ) Ext )} = XdF(X) . (3.9)1

-00

In general, this integral must be interpreted as a Stieltjes integral discussed in
Sec. 4.2.2. However, if F(X) is absolutely continuous, one can replace dF(X)
by .f(X) dX, where f(X) is the probability density, and interpret the integral as
a Riemann integral. A brief discussion of the Stieltjes integral is given in Sec.
4.2.2. If the process {x(t, X)} is stationary in the strict sense, the distribution
function F(.) is invariant under the translations t -+ t + t, and the value of the
integral in Eq. (3.9) is independent of the time, t.

The second member of Eq. (3.9) is referred to as the expectation of the
random variable x(t, X) at time t. The angular braces in the first member will
be used in the present account to denote the ensemble average, although many
authors use this notation for the time average and use E '} exclusively to
denote ensemble average. Occasionally an expression will contain two distinct
ensemble averages, as it seems better to have two notations available for this
kind of average..

The time average over an interval T is defined as

+T12

XT1Q, L f x(t, X)dt (3.10)

-T/2

If the time series is not continuous but consists of a discrete sequence of sam-

pies x(nAt, X), one replaces this definition by

N

XN(t, X) = N (3.11)

The ergodic hypothesis mentioned above can now be stated with more
precision. This hypothesis asserts that if (1) a stochastic process is stationary
in the strict sense, and (2) it cannot be subdivided into two or more suben-
sembles each with probability different from zero or one, then one may equate
corresponding time averages and ensemble averages. For example, if a proc-
ess is ergodic one may assert that

lim xT(t, ?X) = (x(t, X)) (3.12)
T.•.

for every sample choice X with the exception of a few pathological cases the
probability of which are zero. The left member of Fq. (3.12) does not depend

. .
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on t so the right member cannot depend on t. It has already been remarked
that this will be the case if the process is stationary in the strict sense. Con-
versely, the right member does not depend on X so the left member cannot
depend on X. Crudely speaking, this means that each sample of the process
must be typical or, if one is a little more precise, any sample of the process
which is not typical must have zero probability of occurrence. For example,
if one half of the samples of the process has a time average of zero and the
other half has a time average of unity, one could not expect that any sample
chosen at random would be representative of all the samples.

The assumption of ergodicity is severe, but it is one that greatly simpli-
fies the analysis. For example, one can interchange time and ensemble aver-
ages readily in the course of a discussion. Unfortunately, this interchange is so
convenient that one tends to make use of it even when it is unnecessary. As
a result one tends not to distinguish whether or not a result really requires the
assumption of ergodicity.

In the earlier discussions it has been suggested that many of the proc-
S-,, esses such as reverberation which arise in sonar measurements fail to meet the

assumption of stationarity only because of a variation in intensity level that
could be corrected for by means of a clever automatic gain control (AGC).
Unfortunately, this is not always true. Volume reverberation, for example,
consists of reflections from small obstacles or inhomogeneities in the medium.
The nature of and the motion of these obstacles may vary with the range so
that the returning signal has changing statistical parameters over and above the
simple spherical spreading losses that can be removed by AGC. In the case of
passive listening the signal and noise may not be stationary because of time
variations in the sources and/or the transmission medium. A discussion of sig-
nal processing will not be complete unless it faces up to these problems. In
particular, one must endeavor to determine a relationship between departure
from stationarity and the degradation of performance.

3.5 Variance and Correlation Functions

Ensemble and time averages of a random variable are defined in Eqs.
(3.9) and (3.10), respectively. Similar definitions can be made for the average
of the product of two samples of a stochastic process. These averages, which
are generally called second order moments, are so important that a wide va-
riety of names have been introduced in the literature to describe them. The
nomenclature introduced below follows closely that of Bonnet (1965b).
These definitions have been discussed with Professor Bonnet, who has agreed
to certain extensions of the notation to include time averages.

Suppose that one has a sample x(t, X) of a stochastic process that is
governed by the second order distribution function F2 (XI , t1 ; X 2 , t2 ). The
covariance [(t,, t2) is defined by

F

' II .
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+00 +00

7(t 1 , t 2 )=(X(t])X(t 2 )) = ff Xi X 2 dF 2 (XI, ti;X2 , t 2 )

0.. .. (3.13)

If one wishes to stress the fact that the two values x(t1 ) and x(t 2 ) are from the
same sample function, one may speak of the autocovariance. It should be
noted that no assumption has been made regarding (x(t, X) ). If (x(t, X)) 0,
the process is said to be centered.

If the stochastic process is stationary in the strict sense, the distribution
function F2 (') is invariant under a time translation. Hence, the integral in Eq.
(3.13) will depend only on the time difference r = t 2 - t,. In this case one
"nay write

C (r) (x(t) x(t + r) . (3.14)

The function C (r) is called the correlation function whether the process is
centered or not, Since the process is stationary one knows that (x(t, X) ) is a
constant, say . Some authors, such as Middleton (1960), prefer to define the
covariance function as

rF(t,, t2) = ( [x(t,)-Efx(ti)}I [x(t2 )-E{x(t 2 )}l )

which reduces to Eq. (3.14) when (x = 0. Again, one can add the prefix
"auto-" if one wishes to stress the fact that x(t) and x(t + r) are from the same
sample. I

One can write down a time average that is similar to Eq. (3.13) by de-
fining the time correlation function as

x(t, A) x(t + T", X) = him 1 F x(t, X) x(t + 7-, X) dt . (3.15)
T -* oo T-Tf,+T/2

When the process is ergodic, the correlation function and the time correlation
function are identical functions of r and either one may be replaced by the
other.

The concept of ergodicity is not entirely satisfactory from a practical
standpoint because there isno simple method of testinga sample of a stochastic
process to see if the process is ergodic. Often one has only a finite section of
one sample so that Eq. (3.15) car, be evaluated approximateiy, but there is no
assurance that the result is a satisfactory approximation to the correlation
function.

S". . C J
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It is obvious that strict stationarity and ergodicity are rather strong as-
sumptions and that for many purposes a weaker set of hypotheses will suffice.
For example, if one is willing to restrict a discussion to ensemble averages, the
question of ergodicity can be ignored. Alternately, if one only wishes to dis-
cuss second order moments, one may be content to assume only that (x(t, X) )
is a constant and that the correlation function C (T) exists. In this case one
says that the stochastic process is stationary in the wide sense.

Whether the process is stationary in the strict or the wide sense, the cor-
relation function C(r) has some interesting properties. First, it is a symmetric
function of 7. Secondly, C (0) is the mean square value of X(t, X) so it is
closely related to the power associated with the process.

Wiener (1953, p. 154) proves that if the time correlation function de-
fined in Eq. (3.15) is continuous at r = 0, it is continuous for all real values
of r.

The F*:ndard deviation a is a quantity that is closely related to the co-
variance function. One defines

'2 = [x(t)- -{xt)}]2) (3.16)

and a as the non-negative square root of a2. The standard deviation a does

not depend on the time if the process is stationary in the wide sense. If the
square on the right side of Eq. (3.16) is expanded, a moment's calculation
shows that

02 = C (0) - [{x(t)}12  (3.17)

If the process is ergodic and centered, one has

a,= lim I T x 2(t)dt.. (3.18)

The acoustic signals which are the inputs to the hydrophones in sonar appli-

cations will almost always have an average value E~x(t)} that is zero. How-
ever, in the analysis of systems used in signal processing, one encounters sto-
chastic variables whose average value is not zero.

If the random variable is a complex number, the definitions given in
Eqs. (3.13) and (3.14) should be modified by replacing the second factor in
each integrand by its complex conjugate. When this is done for the correlation
function C (T), one sees that C (0) is still real but C (-r) = C* (+r) where the
asterisk means complex conjugate. The present analysis, however, will be re-
stricted to real variables.
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The important theorem that I C(1 ) I 1 C (0) for all 7 will now be proved
for an ergodic process where the covariance function is equal to the time corre-
lation. The proof will be based on the time integral so that one mayintroduce
the Schwartz inequality. It is left as an exercise for the reader to prove the
inequality without the assumptions of ergodicity. The proof is given below in
the discussion leading to Eq. (11.9).

In order to prove that I C (T) I < C (0) for ergodic processes one may uti-
lize an important inequality known as the Schwartz, the Cauchy-Schwartz, or
the Bunyakovsky inequality, according as one reads the German, French, or
Soviet literature. This inequality states that if one has two real functions g(x)
and h(x) whose squares can be integrated over an interval (a, b), then

g(x) hb < g 2(x) dx h2 (x) dx . (3.19)

aa a

A proof of this inequality is given in any good book on analysis; for example,
Titchmarsh (1939, p. 381).

When this inequality is applied to the integral in the right member of

Eq. (3.15), omitting the factor Tim, one obtains

T/2T+

Tf x(t / X) x(t+ T) dt

-T/22

-T12 -T/2

-T12 -1

This inequality holds for alJ values of T, and, consequently it holds in the
limit as T -- * The two integrals on the right each approach C (0) while the
expression in the braces on the left approaches C (r). Hence one has the
inequality

I C (r) I < C(O) . (3.20)

In view of this inequality the autocorrelation function is sometimes normal-
ized by defining

R (r) = C(r) C(0) . (3.21)

S i - °- - -... . ... . . . . . .. .. . ..-
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The function R (T), whose magnitude is never greater than unity, is called the
normalized autocorrelation function. It is sometimes referred to as the corre-
lation coefficient but this is improper since R (T) is a function and not a
number.

As an illustration of the autocorrelation and the autocovariance func-
tions, consider an oscillator whose phase is random. That is, suppose

x(t, X) ao cos (21f, t - X) , (3.22)

where

ao,fo = constants

t {t I-o < t <+

and

= random parameter with a probability density
1l/21r, 0 < X < 21r.

It is easy to show, by means of a simple trigonometric identity, that

x(t, ) x(t + r, X) = ½%.2 cos (41rft - 2X + 21rfor)

+ ½%ao cos (2irfor).

One may take the time average of this quantity by applying Eq. (3.15) or take
the ensemble average by multiplying by the probability density of X and inte-
grating over the range of X. In either case one obtains

C(r) = + Ya0
2 cos (21rfor) . (3.23)

i i As a second example, consider the random variable

x(t, X) = ao cos (bt2 -X) (3.24)

where

ao, b = constants

X• random parameter with a probability density 1/21r, 0<•<21T.

A little algebra and trigonometry will enable one to show that

-- *..2 , --
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x(t, X) x(t + r, X) =½ao2 cos [ 2b(t + r/2)2 + -hbr2 - 2X] +

Ilao 2cos (2btr + b 2 ) (3.25)

The famidy of random functions defined in Eq. (3.24) differs from the family
defined in Eq. (3.22) in that it is not invariant ,nder a shift in the time. Hence,
the present family is not stationary and one must not expect the time average
aand the ensemble average to be equivalent. If one applies Eq. (3.15) to Eq.
(3.25) one gets the interesting result that

C(r) = 1,,r= 0
= 0, 7r- t 0J. (3.26)

In order to evaluate the integrals one can make use of Peirce's (1929) formula
No.. 487. On the other hand, if one performs an ensemble average, one
obtains

( x(t, X) x(t + r, X)) = ½ao2 cos(2btT + br2 ) (3.27)

The careful reader will have noticed that in the development extending
from Eqs. (3.13) to (3.20), the concept of stationarity in the strict sense was
not utilized fully.. The only assumption made was that C(0) existed and that
averages such as those in Eqs. (3.15) and (3.16) depend only on r. These
slightly weaker assumptions are referred to as stationarity in the wide sense.

3.6 The Gauss Process

Of the limitless variety of distribution functions F,,() that may be en-
visaged, there is one class of functions that has been used most extensively in
the analysis of acoustic signal processing systems. This process has an abso-
lutely continuous distribution function so that one may describe it uniquely
by the probabdity density function which is the gaussian function of n vari-
ables. This process is used widely in analytical studies for two reasons. First,
the integrals that arise in the analysis are relatively easy to evaluate. Secondly,
the process is completely specified by the second order moments.

A stochastic process x(t, X) is said to be gaussian if every finite set of
sample values x, = x(t,, X), i = 1, 2, ..... N, satisfies the frequency function

A-x, X2, . ) = / exp amX,n- (X~(t),,)}
(21r)N/2 2L T[_m, nl

{x, - (x(t,) )}]. (3.28)

41
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In this expression I amn I Is the N X N determinant of the coefficients an,.
One may assume without loss of generality that amn = anm.

This aefinition of a gaussian process does not presume a stationary proc-
Sess, since the quantities (x(t,,)) and an, need not be invariant under a trans-

lation of the time. However, most of the gaussian processes that are of interest
in acoustic signal processing are stationary in the wide sense, and, further-
more, have the property that the average value of each mample (x(t,,) ) is
zero. Consequently, it is sufficient to restrict the discussion to frequency
functions of the form

ftX2,X 2 , XN)= I am n) U/, exp a.Xmx, (3.29)
" ~tn,n- I

where the quantities an, are functions of t, - tm only. If one integratesf(.)

with respect to each variable x,, i.e., if one applies the operator fdx , for all

i = 1, 2, . -.. IN, except i = k, the resulting expression is the probability density
or frequency function for xk. If the series for x(t, X) is stationary, the re-
suiting frequency function for Xk i, ! gaussian function independent of tk I

One can utilize the frequency function (3.29) to calculate the ensemble
average of the productsxx, which are the second order moment i,,. That is,

y = ( x~xI .(3.30)

One finas quite generally that the second order moments pit are the cofactors
Ai1of the determinant A - I a,, I divided by the determinant A, and conversely.
Thus ifM is the determinant t I

Pt, = A,,/A and a,, = Ai/M1 . (3.31)

These general results will be illustrated for the case N = 2. By virtue of
Eqs. (3.28), (3.29), and (3.13), one has

(xI x 2  - x.In Ix x2 exp[- ",(alI x) 2 + 2a12x x 2

.00

+ a22 X2)] dX i d.X2
4 Thisdcfinition ot M,,/\1i lead to lq (331 )only Ahen (xt))= 0 for all t,,, Otnemwý,e,,
one must introduce tie central second order inoments bv

P1 =1 {I x,-(x(tul, x,-(x(tl}•

I

* i\
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This integral can be evaluated readily by the following steps. First, hold x,
constant and complete the square of x2 in the exponent. The resulting integral
with respect to x2 can be evaluated with the aid of a table of integrals. Then
the process can be completed with respect to x,. This gives

" =-a 1 2  A12

- ,A (3.32)

as required.
As the time interval t2 - t1 becomes larger, the two samples become

more independent and one would expect (x, x2 ), 1 2, and a12 to approach
zero. In this case the frequency functionJ(xI, x2) approaches the product of
two independent gaussian functions of the form

I " and

AX) exp{ I ax2 2 X

Since, for a stationary process, these distributions must be the same, one con-
cludes that a, = a22 and, in general, a I = ail in Eq. (3.29).

Two reasons were given above for the popularity of the gaussian process
in analysis. A more cogent reason is that many processes observed experi-
mentally approximate very closely to the gaussian proccss. An interesting ex-
dmple that leads to a gaussian process is the shot effect. When an electron
impinges on the plate of a vacuum tube a discrete electrical pulse is produced

in the plate circuit. If the electrons arrive at the plate in a random manner,
the resulting current in the plate circuit is a stochastic process. Rice (1944,
1945) has analyzed this phenomenon and shows that as the number of elec-
trons per second increases, the stochastic process approaches a gaussian proc-
ess. This model of the shot effect can be applied to many acoustic phenomena
such as the collapse of cavitation bubbles. The noise at the surface of the
ocean generated by wind and waves seems to be of the same nature.

Admittedly, many experimental time series are not gaussian. For ex-
ample, in the Arctic Ocean there is a low frequency noise background due to
the fracturing of ice caused by thermal stresses. This noise source is like the
shot effect except that the number of events per unit time is too small to
yield a gaussian process, Measurements of this nongaussian noise are presented

by Milne and G6inton (1964).

* -----.----- *--
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However, if one has infoinmation about the behavior of the second order
moments only, one can represent this process by a gaussian process having the
same mean and second moments. Thus, unless one has experimental evidence
about the third order moments, one may as well assume that the process i-
gaussian.

The preceding statement is a special case of a more general result proved
by Doob (1953, p. 72). In this theorem it is supposed that T, the range of t,
is given and two real functions J(t) and r(s, t), Is, teTj are given. The second
function is subject to the conditions

(1) ,(s, t) =r(t, s)
(2) if ti, t2 .... 

tN is any finite set from T, the matrix II r(ti, ti) II
is non-negative definite.

When these conditions are satisfied, there is a real gaussian process x(t, X),
(teT) for whichL (x(t, X) X = (t)

( X(ti, X) x(ti, X) )- x(ti, X) )(x(ti, X) )=r~ti, ti) .

If the N X N matrix II r(ti, ti) II is non-singular, the probability density of the
N samples x(ti, X), i = 1, 2, ... N is given by Eq. (3.28) when the matrix
II am II is the inverse of II r(ti, ti) I I.

To demonstrate the original assertion it is sufficient to point out that if
;L(t) and r(s, t) are determined from a real, nonstationary process, the condi-

"": tions of the theorem are satisfied and the "equivalent" gaussian process is de-
termined uniquely.

The necessity of the second ckndition imposed on r(s, t) is easily demon-
strated. Suppose that one forms the square of a real, linear combination of N
samples of the process x(t, X). Since the quantities x(ti, X) are real, one must
have

bi x(ti, >10.

If one now takes the ensemble average of this quantity, one firds, upon inter-
changing the order of summing and averaging,

N

Z (x(ti, X) x(t,, X) b~ii > 0

i,/= o

orr~. -

* I ,.
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N

r(ti, ti) bibi > 0 (3.33)1" '€ for all possible real values bi. This is just the condition that the matrix Ii r(ti,
!• ti) I I be non-negative definite.

The reader should note carefully the difference between a gaussian dis-

tribution and a gaussian process. The expression gaussian distribution may be

applied to any random variable whether it is a sample from a process or not.

The first order probability density of a stochastic process may be a gaussian
funcuon even though the process itself is not gaussian, For this reason one
sometimes hears the unjustified statement that ani experimental time series was
"proven" to be a gaussian process when all the speaker had demonstrated was
tLat the first order distribution wa5 gaussian..

3.7 The Autocovariance Function for a Clipped, Gaussian Noise

One can illustrate the ideas developed in the last few sections by calcu-

lating the autocovariance function of a perfectly clipped noise., The results of
this example will be needed later. Suppose that one has a stationary, sto-
chastic process x(t, X) that is gaussian and whose mean is zero. A new time
series y(t, X) is generated from x(t, X) by the nonlinear function

y(t,, X) = +1 ifx(t', X) >0
(3.34)y(t, X) =-1 if x(t, X) < O

The problem is to calculate (y(ti, X) y(t2 , X)) from Eq. (3.13) with the aid of

Eq. (3.29) for the special case N = 2.
The calculation of (v(t0, X) yVt2 , X) ) = (yI y 2 )can be facilitated by

considering the two dimensional cartesian coordinate system (xi, x2 ) illus-
trated in Fig. 3.2, where each point Q represents a possible pair of values x, =

x(t, X), x2 = x(t 2 , X). The probability that a sequence of two observations of

the y-series is (+1, +1) is the probability that the point Q is located in the
first quadrant. Similarly, the probability that the sequence of values be (-1,
+1), (l , -1), or (+1, -1) rs the probability that the point Q falls in quadrants
+1, 111, or IV, respectivelys The probability that the point Q fs located in quad-
rants 1, II, I1l, or IV may be denoted P1, P2 , P3, or P 4 , respectively. These
four events are it',tually exclusive so one may add probabilities. Thus, the
probability that yl, Y2 = +1 is the probability that Q is located in the first or

third quadrants which is P, + P3. Similarly, the probability that yi ,y2 =-
is P2 + P4 -. Since the point Q is certain to fall in one of the four quadrants,

it follows that
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II

Q (Xl,X2)
Q X1  X1

2• JIl IV
D2

Figure 3.2-The two-dimensional space in which pairs
of possible observations (x 1 , x 2 ) can be represented by
points, Q, and the four quadrants i, II, il, and IV,

P, +P, +P 3 +P 4 = 1 . (3.35)

-+ In the case of two variables. Eq. (3.29) becomes

& x 1 ,x2) = 2-A exp[-!6(a11 xl 2 + 2a x x 2 +a 22 X22)]

S.... (3.36)

whereA =all a 22 -a 12
2 and a,1 = a 22 . The probability P, is given by

P= f(x1 ,x2) dx L 2 . (3.37)

The details of the evaluation of the integral for P, are given in Appendix 3.1
where it is shown that

P, - 1 - -1 sin-' (al2/all) •(3.38)

Siceal =a22 one sees from the symmetry of Eq. (3.26) that P3  PI. Hence
the probability thaty, Y2 = +1 is

+1 is
P,+Pai={1-2..sin-1r (a,2Iau,)}

A I

U 7 7.V¢
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and, by virtue of Eq. (3.35) the probability that yI Y2 = -1 is

P 2 +P4 = m-l(a1/aI)21, ff 1

The expected value ofy1 Y2, E{yl Y2} =(YI Y2 )is+1 X (PI +P 3)+(-1)X

(P 2 + P 4 ) or

(YI Y2 =_2nsin-' (an/lal).

WJen the process is stationary in the wide sense, this formula can be put
in a more elegant form by introducing the normalized autocovariance function

R = t2 - t1, of the process x(t, X). By virtue of Eq. (3.30) and a similar
calculation for p 1, one can show that Rx() = -(al2lal), and so

(YY 2 )= sin- Rx(T)

ff

This is already normalized so one may writeo

Ry() = 2 sin-' Rx(r ., (3.39)

.1 The functional relationship (3.34) is invariant under a time translation.

Consequently, if x(t, X) is an ergodic time series, y(t, X) is ergodic, and Eq.
(3.39) is valid for ensemble averages as well as time averages.

3.8 Suggestions for Further Reading

There are a large number of books that discuss random processes at an
intermediate level. Most of these are motivated by signal processing or control
systems, and although they are usually excellent, they do not open the door
to the mathematical literature. The best introduction to both the mathemati-
cal and the statistical developments is Cramer (1946). Two books directed
towards stochastic time series are Bartlett (1956) and Hannan (1960). For
the reader with considerable mathematical maturity the book by Doob (1953)
is strongly recommended.

The French literature in this field is excellent. One might mention l.4vy
(1948), Loire (1948), Blanc-Lapierre and Fortet (1953), Blanc-Lapierre and
Picinbono (1961), and Blanc-Lapierre (1963).

The material in Section 3.7 should be supplemented by an important
report on clipped noise that was written during World War l1., Fortunately,
this report has been published recently (Van Vleck and Middleton, IQ66).

- .I'
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Appendix 3.1

The Evaluation of Eq. (3.37)

It is required to evaluate the integral

[A-if exp[!(. iixi2 + 2a1 2XIX2 +a 2 2 )dix

00

Transform to polar coordinates x I = r cos 0, x2 = r sin 0. This gives

v1o2• dod exp[ !(aur2 + a12 r2 sin 20)]rdr
j 2/
0 0

ir/2

=-vAf do _

2iJ all + a12 Sin 1
0

If one changes the variable by 2k = x, one finds

Ir

Af dx
al1 +a12 sinx

0

This integral can be evaluated by means of Peirce's (1929) Eq. (298). By
means of a trigonometric substitution suggested by the fact that A all2 -

a12 2 one obtains

4 T
I l{l--6Sin'

,, . , -.
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PROBLEMS

3.1 Three ideal coins are tossed and the resulting number of heads that result
are counted. Tabulate the probabilities for the possible cases that arise and

draw the corresponding distribution function.

3.2 Illustrate the Cauchy-Schwartz inequality, Eq. (3.19), for the functions
flx) 1 +x 2 ,g(x) =x 3 and the range (a, b) = (0, 1)..

3.3 Does clipping increase or decrease the magnitude of the normalized auto-
correlation function of a gauss stochastic process? Give mathematical reasons
for your answer.

3.4 A sinusoidal signal E(t) = E, cos 21rft is passed through an ideal, square
law rectifier whose output is x(t) = E'(t). Compute the root-mean-square de-
parture of x(t) from its average value. If the output of the rectifier is filtered
with the low-pass filter of Problem 2. i, what time constant T must the filter
have in order that the root-mean-square departure be reduced by one-half?

3.5 zuppose that the water contains air bubbles the radius r of which is a
random variable. The probability density governing r is such that kn r (Qn =
natuial logarithm) is a Gaussian function of mean 2n a and standard deviation

a. What is the average value of the volume of the air bubbles?

3.6 Consider Eq. (3.29) for the special case N= 2 and define 02 = All = P22

and p = P112/0"2 = ],21 /a2. Express the probability density f.(x , x2 ) in terms
of a and p.

3.7 Two random variables x, y satisfy the frequency function, Eq. (3.29)
where x, = x, x 2 = y, M = 2. The variable y is hard-limited as in Eq. (3.34) to
give a new random variable yc. Show that

(Xyc) 2xy )/oy•
IT

Note that the answer is correct even if the gauss process is not stationary.

2I
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CHAPTER IV

Power Spectra

4.1 Definition of a Power Spectrum

In Section 2.1 it was shown that there is a perfectly simple way to asso-
ciate an energy spectrum with a signal of finite duration or, more generally,
with a signal of finite total energy. We now must consider the question of de-
fining the equivalent of an energy spectrum for a stochastic time series. If
x(t, X) is a sample of a stationary stochastic process

+T/2
lim / x2 (t, X) dt (4.1)

- /2?

does not exist, and the energy dissipated in a one-ohm resistor by a current of
j magnitude x(t. X) amperes is unbounded. One is tempted to say that noise

sources do not continue forever,, •o one should consider as the prototype of
our noise source a time series xTAt, X) of finite duration defined by

= x(t, X) i It i < T12q

XT(t, •')'(4.2)

=0 , ti>T/2J.

This interpretation violates the important assumption of stationarity.,
Alternately, one can give up any hope of describing a stochastic series

in terms of energy and introduce in its place an average power density defined
as

T/2

T-I x2(t, X) dt (4.3)
7 /2

When one compares this definition with Eq. (3.15), one sees that average
power density as thus defined is nothing but the time correlation function
f(,r zero time shift. Thut C (0) is the average power dissipated in a one-ohm
resistor by a current of x(t,, X) amperes. Theoretical progress is blocked, how-
ever,- because there seems to be no way to distribute the average power C (0)

65
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amongst the various frequency components. One cannot take the Fourier
transform of x(t, X) since this function does not satisfy the condition given in
Eq. (2.2).

Suppose that in an effort to solve this problem one takes the Fourier
transform ofxr(t, X) to get an energy spectrum. 7f, X) and assigns an average
power density WT{f)

WT{f)= IXTf, X) 12 / T <. oo<f<o (4.4)

to the finite sample. At this point one is tempted to overlook the fact that
"x(t, X) is a sample from a stochastic process and to treat WT(.) as though it
referred to a deterministic wave shape like those analyzed in Chapter II. In
any discussion of the function Wr{f) one must remember that two averages
are implied, the time average and the ensemble average, and that every state-
ment must be valid statistically for all samples of the process, i.e., for all
X-A, and not for the single sample from which WM{f) was obtained.

'The analysis of the energy content of finite signals that was presented
in Chapter 11 enables us to be sure that WT(J) is the correct average power
density to use in connection with the signal defined by Eq. (4.2) since

+00

SW 7 fI ) df = total energy in x7 (t, X) • (4.5)

,001 ?vl"Mddleton (1960, pp. 140-141) gives an excellent discussion of the reasons
why one cannot take the limit of WT(f) as T--00 and interpret this as the power
density of the stochastic process. Rather, one must first perform the ensemble
average on WT{f) for fixed T and then take the limit as T--"'. That is to say,
one must first perform the ensemble average and then extend the time average
to all tune. When the question of the order of taking limits is this subtle, one
cannot rely on his physical intuition, but must follow carefully the correct
analytical procedures.

Although the problem of how one can assign a power spectrum to a
random time series dates back to the 1890's, when Rayleigh and Schuster en-
deavored to analyze light waves, a mathematical solution was not available
until 1930 when Wiener (1930) solved the problem. Khintchine (1934) ob-
tained independently a solution to the problem so the relevant formula Eqs.
(4.7) and (4.8) are often called the Wiener-Khintchine formulas.

Wiener and Khmtchine showed that if one has a real, stationary sto-

chastic process x(t, X), the function 11] defined by

W(f) lim 2 ), (4.6)

T_ 

_0_T

Io
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where the ensemble average must be carried out before T--,, may be properly
interpreted as the power density per Hertz for -• < f < +-. Further, they

showed the remarkable result that C(T), the autocovariance function, see Eq.
(3.14), and W(t), the power spectrum, are Fourier transforms of one another.
Thus

+00

C(T) = f W(f) e+i2wfT df (4.7)

W(f) = f C('r) eCi2wJf dr . (4.8)

The functions C(r) and W(t) are symmetric so the Fourier transforms
may be replaced by cosine transforms. In this case the power is thought of as
restricted to positive frequencies. Thus one can write

00

C(r) [2W(f)I cos 27rfrdf (4.9)
"0

[2W)]= C(r) cos 2firdr, (4.10)

0

and refer to 2W(j) as the power density, 0 ,f< "<,

The Fourier transform of C(r) is denoted W(f) instead of C(f in accord-
ance with the notation stated in Chapter II. This change in notation is made
because the use of W(f) is fairly well standardized. The letter W will also be
used frequently as a bandwidth, but no confusion should arise since bandwidth
is a parameter and not a function.

The reader will have noted that a numerical constant with dimensions
must be added to Eqs. (4.6)-(4. 10) if one wishes to assign a physical interpre-
tation to the symbols. Thus, if x is volts, t is time in seconds, and K4j is a

power density in watts per cycle per second, Eq. (4.10) needs a factor of one
ohm on the left side to make the units agree. The reader can supply dimen-

sional units in accordance with the requirements imposed by his problem, or

he can treat all quantities as pure numbers. In the latter case he can follow

__ -l -,
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Titchmarsh's recommendation and assume that words like power, voltage, and
cycles per second are added to give an exotic flavor to the mathematics.

The pair of formulas, Eqs. (4.7) and (4.8) are not fully satisfactory as
they stand since they do not provide for a mixture of noise and steady tones.
Since a pure tone represents ideally the concentration of a finite amount of
power into a band of frequencies of zero width, one may enlarge the concept
of the power spectrum by introducing delta functions. Alternately one can
replace the power spectrum W(f) by an integrated power spectrum. In order
to do this one must introduce Stieltjes integrals. The details of this approach
are given in the next section. The concept of the integrated power spectrum
stands in the same relationship to the power spectrum W(f) as the distribution
function F(X) does to the probability density A(x).

Suppose that one wishes to introduce a steady sinusoidal signal of fre-
quency f, and amplitude a, inte the noise by adding a delta function to W(j).
One cannot add a single delta function (a'2/2) 6 (f -.fo) since the power spec-
trum must be a symmetric function of the frequency. Hence, one is led to
consider

w(f) =(ao2/4){5 (f + fo) + 6 (- f)}. (4.1 1)

With this definition of W(f), Eq. (4.7) yields

C(T) = (ao 12) cos (27rfor) (4.12)

in agreement with Eq. (3.23).
Since the functions C(r) and W(f) are Fourier transforms of each other,

the remarks made in Section 2.3 about the relation between the width of a I
function and its transform are relevant. In particular, if one has a narrow-band
noise, the autocovariance function will decrease slowly with r. Conversely, if
the noise has a broadband width, the autocovariance function will approxi-
mate a delta function.

For the sake of future reference it might be pointed out if one has a sto-
chastic process whose mean is zero, the mean square deviation of x, ox2 is
given by

o" = C(O)=. W(f) df . (4.13)

4.2 The Theory ot Integration

The theory of integration is a highly sophisticated brarch of mathematics
to which monographic books have been devoted (see, for example, Saks, 1937).

6 . t""'
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Nonetheless, it is possible to give a brief, usable introduction, provided the
reader is willing to accept severe restrictions on the classes of functions that

' ,,will be treated. The text of Cramir (1946) has an excellent introduction to
the topics treated in this section.

4.2.1 The Riemann Integral

Consider a real function f&x) defined over the closed interval

(a < x < b) and which is bounded over this interval. Subdivide this interval
by a set of points x0 , x ,...... , x, such that

a=xo<xl <x 2 ... x 1 =b .

Let mi and Ali be the lower and upper bounds of f(x) in the interval x, < x <
xi+ I, and let

n-I n-I

S, =L nt(xi+ I-x), Sn1 MA{x,+I -x,) . (4.14)

n=O n=O

Now let n--,' in such a way that every interval x,+ I -x, approaches zero. The
quantities s,, and S, approach limits s and S as n-, 0 . If these limits are the
"same, their common value is by definition the Riemann integral

bbf(x)dx.

af

The basic problem of elementary integral calculus is the establishment
of conditions on the function f(x) so that the Riemann integral exists. A
simple, but needlessly strict, assumption is that ftxý be continuous in the
closed interval [a, b]. A finite number of discontinuities in fx), each having
a finite jump, is acceptable since the integral can be expressed as a finite sum
of integrals where each of these integrals is restricted to an interval over which
flx) is continuous. On the other hand it is easy to define a function for which
the Riemann integral does not exist., Suppose that ore defined the function
f(x) so that f(x) = +1 if x is an irrational number andffx) = 0 if x is a rational
number.: In this case rn = 0 and MAi = + I no matter how the intervals x,+ 1 -x,
are formed and sn and Sn do not have a common limit,

There are so many excellent books which discuss the Riemann integral
that it is not fair to single out one for reference. Nevertheless, rather than
leave the reader with no reference, Chapter IV of Whittaker and Watson
(1927) is mentioned.

I .. -. . . ._ __.. . .. . .- _-
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4.2.2 The Stieltjes Integral

The Riemann integral can be generalized in the following
manner. Suppose, as before that one has a bounded, real function f&x) defined
over the closed interval a < x < b. Suppose further that one has a bounded,
real function g(x) which is nondecreasing over the interval [a, b]. The two
sums in Eq. (4.14) are now replaced by

n-I n-I
Sn mi [n[g9l -g:.0(xi)], Sn A [9(x' 0)-gyi I

i=0 i=0

... , (4.15)

Once again n is allowed to approach infinity while the intervals xi+ 1 -xi are
all required to approach zero. If the two sums approach the same limit, this
common limiting value is defined to be the Stieltjes integral of.ftx) with re-
spect to g(x) and the notation is

b

f j(x)dg(x).
a

It will be noticed that in the special case g(x) = x, the Stieltjes integral reduces
to the Riemann integral. For this reason the integral is often referred to as
the Riemann-Stieltjes integral. Further, if g(x) is absolutely continuous, one

may write dg( .) = g'(x) dx and again the integral reduces to a Riemann I
integral.

The requirement that g(x) be a nondecreasir, g function of x assures
one that the differences g(xi+ 1) - g(xi) are never negative. One can relax this
condition and require simply that g(x) be of bounded variation since in this
case one can always express g(x) as the difference gi(x) - g2 (x) of two non-
decreasing functions. An illustration of this decomposition is given in Fig. 4.1.

It is not the purposeý of the present account to enter into the details of
the necessary and sufficient conditions for the existence of a Stieltjes integral.
The reader is referred to Widder (1946) for such details. Although the name
may be new, the use of a Stieltjes integral is certainly familiar to the student
of physics. Integrals such as fvdp in thermodynamics andfF-d"in mechanics
are Stieltjes integrals when p and r are functions of some parameter such as
!ime.

The relation of the Stieltjes integral to the delta function is most inter-
esting, and we have, already on two occasions, avoided the use of a Stieltjes
integral by introducing a delta function. Consider a Heaviside unit step func-
tion H(t) defined by

; -
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H(t) (4.16)
= O,t<O.

g gx

a b

I Ia I b

'..

ka

Figure 4. 1 -Decomposition of a function, g(x), of bounded variation into
the difference of two nondecreasing functions, g1(x) and 92(X).

I.
I -. UI
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At all points except t = 0 this function is continuous and has zero derivative,
At t = 0 the function has a finite discontinuity and the derivative does not I
exist. The function H(t) satisfies the conditions necessary for the existence

of the Stieltjes integral (a, b > 0),

Sf +b
f it) df(t) ,

provided the function A1t) is continuous at t = 0. When one divides the interval
[-a, +b] into subintervals and forms the limits of the sums in Eq. (4.15), one
finds the value fA0) for the integral. Hence the Stieltjes integral of At) with re-
spect to the function H(t) is precisely the same as the integral of ft) 5(t) as
defined in Eq. (2.20). This result is in accoidance with the point of view that
is prevalent among engineers and physicists, that H(t) really ias a derivative

e. H'(t) defined by

•¢ 11(t) = 6(t). (4.17)

By this time the reader will recall the two occasions on which Stieltjes
integrals have presented themselves naturally in the course of a discussion.
The first instance arose when the ensemble average of a random variable x was
defined in Eq. (3 0) as

+00

•I- (X)= XdF(X).

-00L

The distribution function F(X) is a monotonically increasing function that is
bounded and the integral is a Stieltjes integral. On the second occasion the
Stieltjes integral was avoided by the artifice of using delta functions.

When the Wiener-Khintchine formulas, Eqs. (4.7) and (4.8) were intro-
duced, the power spectrum was assumed to be free of line spectra. The possi- j

bility of a line spectrum was added in a heuristic manner by a pair of delta
functions as in Eq. (4.11). It is now evident that instead of power density
W(f) one should introduce integrated power ( (j) defined so that 4i'(t) = total
power in all frequency components less than f., With this definition Eq. (4.7)
can be replaced by the Stieltjcs integral

+00

C(r) = ei2tft dU(f) . (4.18)

-00 f

: *
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In this form the presence of line spectra can be accounted for without any
special terms in the formulas.

This brief introduction to the Stieltjes integral and the concept of the
integrated power spectrum will enable the reader to follow an interest'ng dis-
cussion by Bartlett (1956, Chapter 6). Bartlett shows how one can infer the
existence of the integrated spectrum f (I) from the existence of the autoco-

variance function.

4.2.3 The Lebe- ,ae Integral

The class of functions which have Riemann integrals is ex-
tremely limited from the viewpoint of a mathematician and many definitions
of integrals have been proposed in an effort to extend the class of functions.
One of the most useful of these generalizations is known as the Lebesgue inte-
gral after the discoverer. The definition of the Riemann integral given after
"Eq. (4.14) depends fundamentally on the idea of an interval [x1, 1, x11 on the
real axis, so that, m a crude manner of speaking, the definition is valid only for
functions which are well behaved in such an interval. On the other hand, it is
easy to define the behavior of a function in terms of sets of points as in the
example given above where the definition was in terms of the sets of rational
and irrational points. These definitions do not lead to meaningful Riemann
integrals.

"The basic concept of Lebesgue integrals involves the definition of the
measure of a set of points. It is highly desirable that the definition of this meas-
ure should yield the length of an interval xi+1 -x when applied to the set of
points I x L, < x < x,+ 11 since this will insure that the Lebesgue integral will

be equal to the Riemann integral when the latter exists. In view of the fact
that sets of points may be extremely complicated, the Lebesgue integral is de-
fined not by dividing the abcissa into intervals but by dividing the ordinate scale
into intervals, say f,, < f(x) <fo + Af and asking, "What is the measure of the
set of points x that satisfy this condition?" It is hardly possible to go beyond
this description of a Lebesgue integral without giving much detail. There are
numerous books that provide introductory accounts of these integrals. Of
these only those by Cram&r (1946) and Titchmarsh (1939) will be mentioned.

There is one example of a Lebesgue integral that agrees with one's intui-
tion and which illustrates the critical features of this integral. Consider the
function f(x) which is defined to be +1 if x is an irrational number and 0 if x
is a rational ntumber. This function was mentioned aUove as an example of a
function which did not admit of integration bý Riemann's method. The set
of points x, say in the interval [0, 1 ], for which x is a rational number is infi-
nite but it is denumerable and the measure of this set, as of any denumerable
set, is zero.i Hence these points do not contribute anything to the value of

I his statement is ,ot self--vident It is provided as an examnpie of the property of mcasure.

,i),• . C-. "" _ -•.• •
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the integral whether f(x) = 0 or is a finite number. On the other hand, there
are so many irrational numbers in the interval [0, 1] that the measure of this
set is one. Hence the Lebesgue integral of (x) is the product of the value of
f(x) which is one and the measure of the set of irrational numbers in the inter-
vai [0, ! ] which is one. The Lebesgue integral in this simple example has the
value one.

It is believed that this very sketchy and qualitative introduction will be
helpful to the reader for three reasons. First, it should point out that readers
acquainted with the theory of Riemann integration should not be intimi-
dated by authors who state that their integrals are Lebesgue integrals. Often
this statement is made for the sake of elegance rather than for physical con-
tent, so that if the reader simply thinks of the integrals as Riemann integrals
he may miss some of the nuances, but no more.

Secondly, the reader will note that the events of probability bear a
strong resemblance to sets of points. This means that a theory of integration
based on the measure of a set of points is better suited to a discussion of
probability. For example, the statement that a function has a certain property
everywhere "except for a set of points of measure zero" is the analogue of a
statistical statement such as no member of a family of stochastic functions
tx(t, X)J is strictly periodic "except for a set of probability zero."

The third reason is the hope that this introduction might encourage the
reader to learn more about the subject. The close relation betweea Lebesgue
integrals and the foundations of probability are set forth by Kolmogorov
(1933) who was the first to provide a satisfactory axiomatic basis for proba-
bility theory.

4.3 Analytic Examples of Power Spectra and Correlation Functions

If, over the band of frequencies of interest in an experiment, the power
density W(f) is constant, one speaks of white noise. One can approximate this
situation by treating W(J) as a constant W, over a frequency band large com-
pared to the range of interest. Another approximation that is easier to handle
in analysis is to assume

W(rf = W', exp{-l(2lrfo)2} (4.19)

where a is very small but not zero. In this case, as may be seen from Eqs.
(2.16) and (2.17),

W.O 2 021 5W (r

C(7) = exp{(r2/2o W0o(r) . (4.20)

Suppose that this broad band noise is passed through a filter with a fre-
quency response P() so that the power spectrum of the output is IY(f) 12 Wf).

t-.-*
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At this point one can let o -u 0 with no difficulty, since the total power in the
output is finite. One may calculate Q(() for 11'e output of the filter by com-
puting the Fourier transform of IY(f) 12. For example, if the filter has an ideal
pass-band characteristic of width 2 W centered about f, and, of course, a sec-
ond band centered about -f, one finds for the output

C(r) = 2WWo (sf ) cos 21for . (4.21)

The similarities between Eqs. (4.21) and (4.12) are suggestive. 2 WWo is the
total power passed by the two pass bands centered at ± fo and corresponds to
a.2 /2 in the first case., The finite bandwidth W yields a modulation factor
(sin 7r Wr)/InWT which approaches zero as T -- -.

This example is of considerable interest in that it shows how one can
discuss the response of a network to noise without writing down an explicit
function for the random variable x(t, X).

4.4 Analytic Representation of a Stochastic Process

In the last section it was seen that many results about stochastic proc-
esses could be obtained without having recourse to an analytic expression for
a sample function x(t, X). Nonetheless, it is frequently useful to have such an
expression. This problem takes two forms. One may have an experimentally
"recorded sample of a random process for which one desires an analytic repre-
sentation Alternately, one may wish to write down an analytic expression
which can serve as a sample of a stochastic process with certain prescribed
features.

Let us consider the first problem now and defer the second one until
the end of Sec. 4.5., Suppose that one has recorded a function x(t) over a
time interval a < t < b which is a sample random function. It will be assumed
that this random function is a member of a stationary, ergodic stochastic
process that has a zero mean and a continuous autocovariance function. There
are many sequences of functions that are complete, orthogonal, and normal
over the interval [a, b] that may be used to represent x(t). Choosing one of
these sequences 1 pm (t) I, one may write

00

x(t) C ,,Pm(t) , a < t , (4.22)

m=O

where

2 It is hoped that no confusion will result from the use of Wo for power density and W fo[r

bandwidth. Both are sta idard notations.

1
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Cm X() An (t) dt . (4.23)

a

For any one sample x(t) the coefficients are uniquely determined and
there is no randomness. However, if this process is repeated for each membei
of the family of functions Ix(t, X) I, we get a new set of random variables
cm(-,) where, as indicated, cm(X) depends on the ensemble variable X. This
dependence is made explicit by writing

b

cm(X) f" x(t,, X) •Om(t) dt (4.24)

One may form the ensemble average of this expression and interchange the
order of integration and ensemble average to give

(CM(X) ) x(t, f) ) era(t) dt = 0 (4.25)

a

The last step follows since the mean of the process vanishes.
The next question of interest is, "Are the pairs of coefficients (Cm, Cn)

for any one sample, X, statistically uncorrelated when m # n?" One can write
Sb b

Cm( W)Cn (A))= x(tl,,,k) x(t2,A) mý ,)An(ti ) ý,Odt, dr2.

Taking the ensemble average, one finds
b b

(c,n( N)Ch(N)=• (x(t,,X) )x*2,X) -Pm~,0) ýn12) dt, dt2.

It has been assumed that the process is ergodic so the ensemble average in the
integrand can be replaced by the time autocorrelation function C(t2 - ti ) of
the process. Hence, one obtains the result

LCrN(C) (N) ) (-'(t2 -• I p (t I pn (t 2 dtI dt42 (4.26)a a]
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It seems most unlikely that this integral will vanish when m 0 n for an arbi-
trary set of orthonormal functions. Consequently, the set of coefficients cm
of the expansion will not constitute, in general, a set of uncorrelated random
numbers.

There is one case of interest that is especially simple. If the stochastic

process is a white noise, i.e., if the autocorrelation function is a delta function
as in Eq. (4.20) when u -' 0, one ha-, for Eq. (4.26)

b4

C" C "(X WnX) Wo W(2 - tl) • -n (ti ) ¢n(t2) dt, dt2

a

b
IV,, ýO.(ti) ýP(ti) dt,

Wo  amn

Use has been made of the assumption that the set of functions I pm(t)I is ortbo-
normal In this special case the coefficients are uncorrelated random variables
and the mean square value of each component is Wo, the power density of the
process.

It is possible, in principle, for a given autocorrelation function C(t2 - t)

to find a set of orthonormal functions for which expansion coefficients are
uncorrelated. Unfortunately, the details of this solution are rather involved
and require a deep knowledge of the theory of integral equations. The inter-
ested reader is referred to Middleton (1960, pp. 383-386).

Of particular interest is the question of when can one use trigonometr,
functions for the orthonormal functions p.(t). The answer is that trigon,.
metric functions can be used only if the process is truly periodic. This case
will be examined in detail in the next section. It is a common experimental

practice to take a finite sample, say in the form of a recording on a magnetic
tape, and make a periodic function by forming a closed loop. This is a prac-
tical nethod of getting the coefficients of the Fourier expansion, but as Eq.
(4.26) shows, the resulting coefficients ate not statistically uncorrelated.
Nonetheless, it can be shown that if the length of the sample, T = b - a, is
large enough so that the power density W(f) does not vary appreciably over
intervals of width many times IIT, the correlation between the Fourier coef-
ficents is so slight that in practice one may consider them to be uncorrelated
(Blackman, 1957).

.IN~ .
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A proof that the coefficients %m of the expansion, Eq. (4.22), are un-
correlated gives a result that is weaker than one would like.. A conclusion that
is more useful in the analysis of signal processing is that tha coefficients are
statistically independent of one another. This sironger property is often intro-
duced as a separate assumption. The reader is referred to Blackman (1957)
for a discussion of this point, He says that if x(t) is a gaussian process whose
mean value is zero, the vanishing of the expectation (cm(X)cn(X) ) implies the

statistical independence of the coefficients.

4.5 The Analytic Representation of a Periodic Process

Let us suppose that the stochastic process is periodic with period T so
that any sample may be written as

Go

x(t, ?) {an cos(2irnt/7) + br sin(2ffnt/7)} . (4.27)

n=O

Note that ( ) is an ensemble average over X so that (x(t, X) ) would be a func-
tion of the time were it not for the assumption of ergodicity.

Take the ensemble average of Eq. (4.27) and assume that the infinite
summation and the ensemble average can be interchanged. If the stochastic
process has an average value of zero, one has

00

0 {(a, ) cos(27rnt/7) + ( bn ) sin(27rnt/7)}

n=O

an identity in t. Since the sines and cosines form a set of orthogonal functions a

over the interval of length T, this equation will be true if and only if

(an) (bn) 0, n=0, 1,2,.... (4.28)

Next suppose one computes the autocorrelation function from the sam-
ple Eq. (4.27). By virtue of the definition,

C(-r,)) = lim 1 f x(t, X)x(t+ r,X)dta

The parameter X is inserted in C() to remind the reader that this function is
computed for a sample value X. Now x(t, A) is periodic of period T so if one
writes T, = (2N+I)T+ 2to, the integral may be written as

17i

a * - - .. - I" - _ - -
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+T/2
q r, X) = 1 x(t, X) x(t + r,)) at

'Ve - T/2

-iNT Tt+ +lim L- at +TTt dt

STI T, f •

"Te egad n'h"ls Twto inerl sbuddadtetrsapoc
SThe integrand in the last two integrals is bounded and the terms approach

zero in the limit so they may be dropped. This gives

+T/2
0 1 X) x(t, X) x(t + 7, X) dt (4.29)

T
T-/2

for the periodic process. When Eq. (4.27) is substituted in Eq. (4.2) and the
sin

trigonometric terms are expanded, one gets products such as (2mrnt/7)
cos

i sin
cos (2irnt/T). These are all orthogonal over the basic interval T except for

sin2 (2irmt/T) and cos2 (21rmt/7). These yield integrals equal to T/2, if m * 0.
When the details are carried thruugh, one gets

C(r, ,= 2 + 1 (an2 + bn') cos(21rnr/T) . (4.3C)
2 T

n-1

This function is symmetric .in r, as it should be, and Q'(0) is equal to the sum
of the powers in all the components, including the dc term if it is present.

It will be remembered that this calculation has been carried out for one
sample of the process corresponding to a particular value of X, the ensemble
parameters. In order to obtain an autocorrelation function that is typical of
the process rather than of the sample, one must form an ensemble average on
A. This gives

C(-) =(C(t, ))=(ao02 +.•-Z {(a,2 + (b, )}cos(2,rnr/7).

S.... (4.31)

~ ~ - - --- 7w -
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A digression is introduced at this point by returning to the subject of
the last section. If the periodic autocorrelation function, Eq. (4.31), is sub-
stituted into Eq. (4.26) and if the functions' ýPm(ti), Pm(t2) are replaced by
Ssin sinsin (27rmtl/T) and (21rnt 2/7), one finds that
cos cos

(a, an) = (bi bn) =0 if m 0 n,

(am bn) = 0 for all mi, n (432)

(am 2 ) =(bn2),;nO* }

This is the proof of the statement made above that if the process is truly
periodic, it can be represented by a Fourier series whose coefficients are
uncorrelated.

"Returning to the discussion of the periodic stochastic process, one can
use the Wiener-Khintchine theorem, Eq. (4.8), to find the power spectrum
associated with Eq. (4.31). When one makes use of the fact that (an' ) =

( b, 2 ), one tinds

KW -- ell (a," , f + (4.33)

2 T

wheren ba 0, eo = 2, This formula agrees exactly with one's ideas of the distribution

of power in the components of a Fourier series when it is remembered that
the power has been divided between negative and positive frequencies.

When T is large, the spectral components are close together, since they
are sepaiated by a trequency of 1/T. If one is willing to "spread out" the
power into a continuous spectrum the power density at frequency fn = n/T isS~defined so that

IV(f,) Af = W(fn) 1 ="(a. 2

7' 2

except at n 0. The smoothed spectrum is

3 Lach constant Cm (except c.) in FIq (4.22) must be replaced by a pair of constantsaM,

h,,. The functions "in (2nmt/T) can be normallied, if one wihc%, by multiplying by
co%,

N/,),/ /iT N -Tif in 0).

id
•7~~'-- - ---- -
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IV(fn) = T (f2

(4.34)

W(O) = T (a o2 ) .

It will now be shown that the result of this heuristic derivation of a con-
tinuous power spectrum for a periodic process for large periods T is compatible
with the Wiener-Khintchine theorem as it should be. If Eq. (4.32) is rewritten
using ( an2 ) = , ) and extending the sum over negative integers, one has

+00t -~T '"• n
en/ ,(an, cos r7ra'r)•l

O =.-00

where again, by definition, (a.n 2 ) = (an 2 ). Following the standard procedure
in going from a Fourier series to an integral, set (1/7) = Af, (n1T) =f, and use
Eq. (4.34). In the limit as T -*00 this gives

+00

CQT)= Zf W(f)cos2iTrldf

-I00

as required.
The example of the periodic process is discussed in some detail since it

will help the reader to understand an artifice that is frequently used to analyze
the response of a system. The reader is referred to Bryn (1962) for an ex-
ample. It is assumed at the beginning of the analysis that the process is peri-
odic and can be represented by a Fourier series. At the end of the analysis
one can let T - to obtain results for a non-periodic process. It is often real-
istic to assume that each coefficient of the series has a gaussian distribution
with zero mean That is, it is assumed that each coefficient is a random vari-
able whose probability density is

flan ) - exp{(an2/2 (a- 2a)} (4.35)

By virtue of Eq. (4 34), one can choose the gaussian distribution so that the
stochastic process described by Eqs. (4.27) and (4.35) approximates closely to
any assigned power spectrum. The standard deviation of a, or b, is W(f-n ) A
where, as befie,f, = t./T, Af= l't.

The last step in the analysis is the derivation of the probability density
of the random variable x(t. X) defined in Eq. (4.27). In order to avoid argu-
iments based on infinite sums, let us assume that all harmonic components of
frequency greater than/A' = N/T have zero amplitude. This is not a significant
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restriction from a pract-cal point of view. Any constant timc t the random
variable is given by

x(t, X) = { co:;(21rnt/7) + b., sin(2irnt/7)}.

The an's and bN's are independent, gaussian variables. The coefficients
sin
s (27rnt/T) are constants so the finite sum is a gaussian variable whose mneanCos •

square value is the sum of the mean square values of the individual terms. Thu.,

N

(x 2 ) = {(a, ) cos2 (21rnt/7) + (b,• .sn2(2antlT)}

n0O

but (an 2 ) 2 (O 2 ) So

i-N

(X 2 ) - - en (an2' = C(O) . (4.36)

n =-N

th,! last step follows from Eq. (4.30). Hence, the random variable x(t, X) has
the probabiity density function

(x exp x 2/2 0) (4.37)

We are now in a position to answer the second question idised at the
beginning of Sec. 4.4. One can write down a F'curier series representation of a
sample of a random process when either the autocorrelation function or the
power spectrum is specified.

72'r
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PROBLEMS

4.1 The input to the low-pass filter of Problem 2.1 is a white noise with
spectral density Wo volts2 per Hz. What is the autocovariance fu.ction of
output of the filter?

4.2 Repeat Problem 4.1 for the high-pass filter in Problem 2.1.

4.3 Consider a phase-modulated signal

E(t) =Eo cos{wit + a sin W2 t}

where a 4 1 and w2 - wI. What is the integrated power density• (k ) of this
signal?

4.4 The input to the low-pass filter of Problem 2.1 - a white noise whose
power density per unit Hertz is Wo. The resulting output voltage has a root-
mean-square-value E(T) where T is the time constant of the filter.

(a) Plot E(T)/IWo½ versus lIT.
(b) Instead of assuming that the input power spectrum is constant,

use the more realistic assumption given by Eq. (4.19). Derive a formula for and
plot the curve of E(T)/Eo versus u/v'" T, where E0 is the root-mean-square
voltage of the input noise. Derive the asymptotic forms of E(T)/Eo for large
and small values of ao/v/ T.:

(c) Give a physical explanation why E(7)/Eo is unbounded in part (a),
but is bounded in part (b).

4.5 When an electric charge q is moved through an electric field t from a

point A to a point B, the work done by the experimenter is 4f q-. ds.This
A

expression fails to give the correct answer if the path goes through a surface
dipole distribution.. Show that when the work is expressed as a Stieltjes
integral, this difficulty is avoided.

4.6 A stochastic time series x(t, X) is governed by the following distribu-
tion function at time t = to,

= o,X<-I,
=(I +X)",-I --<X < -%

F(X) =%½,-%<,X<+%
=X,+%<,X< 1

= 1,+1 < X.
(a) Evaluate the Stieltjes integral in Eq. (3.9) to find the expected

value of x.

S• , -.
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(b) Find the expected value of x2 .
(c) Find the probability density associated with this distribution.

4.7 A stochastic process of period T has the form

N

x(tX) L 1 cos(27r n_.+ X)
=L n T

n= 1

where X is a random variable whose probability density is constant over the
interval (0, 27r) and zero elsewhere.

(a) Show that the ensemble average (x) is zero.
(b) Show that the ensemble average (x2 ) is a function of the time t

and is, in fact, unbounded at t = 0 asN N o
(c) Discuss the relevant difference between this example and the

example that led to Eq. (4.36) where (x2 ) is independent of the time.

f4
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CHAPTER V

Miscellaneous Topics in Probability Theory

5.1 Conditional Probability, Likelihood, and Bayes Theorem

One of the important problems of classical probability is that of assessing
the probability of a hypothesis after one or more observatio.,s have beer
made. This can be restated in the context of the present discussion by asking

p what is the probability of the hypothesis that a signal is present after the out-
put of the detector has been sampled. Suppose that one has a physical situa-
tioli about which certain information J is available. On the basis of this in-
formation 4 one anaiyzes the situation and arrives at a set of hypotheses Ho,
H, ..... HN from which one would like to make a choice. The selection of
the particular H, will be made after certain further information p has been ob-
tained. One may speak of the prior probability' P(H, Ij ) of the hypothesis
H, before the additional data p have been obtained and of the posterior prob-
ability P(ll, ipJ) of the hypothesis H, after the data are available.

The standard form of conditional probability enables us to express the
probability P(H~p i J ) of both the hypothesis H, and the data p as the product
of the probability of p happening, given 4, times the probability of H, happen-
ing, given both p and J. Thus

P(H,p I1)=P(p 14) P(H, Ip) . (5.1)

The term or. the left is symmetric in H, and p so one can write equally well

P(p H, I) = P(Hi i 4) P(p I1, 4) (5.2)

When the ratio of the last two equations is formed, the terms on the left can-
cel. This gives

P(ni Ipo) = P(Hi I D)P• lii J) (5.3)

The denominator of the term on the right does not depend on the ith hypoth-
esis, so in comparing the different hypotheses one may wr:te

t One fiequently encounters the expression "a pnori" but in this se.:ton the usage of Ken-
dall (1948) will be followed. The expression P(Hi i ) is read "the probability of the hy-
potheis !!, given the information 4 This notption will be used extensivel) here and in
Chapter VIII.

85
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F(H, I p )P(p I1111) P(H Ip) (5.4)P(Hi i T)

where the constant of proportionality does not depend on i. The term on the
left is commonly called the likelihood. The term on the right, the ratio of the
posterior probability to the prior probability, is sometimes called the surprise
because it is lurge when the observations require' a large change in one's assess-
ment of the corresponding hypothesis.

The proportionality, Eq. (5.4), is called Bayes' theorem or Bayes'princi-
pk of inverse probability. The latter terminology results from the following
interpretation. The hypothesis that yields the largest likelihood is the most
probable. Thus one uses the observations to deduce conclusions about the
hypotheses which is the inverse of the more customary procedure of predict-
ing observations from the hypotheses.

In the case of signal processing the hypotheses H, relate to the presence
or absence of a signal. For example, in the simple case in which only one pos-
sible signal can occur one can let Ho = hypothesis that no signal is present,
H, = hypothesis that a signal is present, and let p denote the message received
by the detector. The likelihood ratio in this case is the ratio P(p I H, j)/
P(p I Ho I) of the likelihoods. If many signals Si are present, each with some
known probaoility, the likelihood ratio will be averaged over the signal class
to form an expectation if one is concerned only with the hypothesis that any
signal is present. The constant of proportionality that is not written explicitly
in Eq. (5.4) cancels when one forms the likelihood ratio. The reader is re-
ferred to Woodward (1953) for an interesting discussion of likelihood and its
application to radar detection.

5.2 The Characteristic Function

Most of the physical quantities that have been discussed have had Four-
ier transforms that were equally useful. Illustrative of this statement are the
frequency response and power spectrum which were shown to be the trans-
forms of the impulse response and the autocorrelation functions, respectively.
Similarly, the Fourier transform of the probability density is of great impor-
tance and is called the characteristic function, customarily denoted P(t). The
variable t does not mean time in this histance. One defines

+00 +00

s(t)E{etx} f eitxt(x)dx=J eitx dF(x) . (5.5)

-00 _-M

The last form is more fundamental since it is based on the distributionfunctiun. -

%
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It should be noted that this form differs from the other Fourier trans-
forms in that a factor 2ir does not occur in the exponent, In order to correct

lie for this change one must write the inverse transform for the probability (when
one exists) as

+00

f Ix) = e-itx ip(t) dt., (5.6)
2i0

Unfortunately, this means that in order to use the Fourier transforms listed in
S' Appendix 2.1, a change of variable must be made.

If one differentiates Eq. (5.5) successively with respect to t and sets t 0,
one finds

400

-p' (0) = xdF(x) (x (5.7)

+00

d(0) f • F2(x)=x 2  , (5.8)

provided, of course, the integrals exist. Thus a Maclaurin expansion of the

characteristic function yields the moments of the distribution functions of
the random variable. This suggests immediately the mathematical question,
"What restrictions must be placed on an arbitrary function q(t) in ordet that
it will be the Fourier transform of a probability function?" For an answer to
this question the reader is referred to Kendall (1948) or Cramir (1946).

Chandrasekhar (1943, p. 9) has remarked that there is "a very general
principle" that the characteristic function has a more direct relationship to the
physical situation than the probability density. A trivial example of this gen-
eral principle arises in the calculation of the probability density of the sum of
two independent, random variables. If, instead of computing the probability
density of the sum, one computes the characteristic function of the sum, one
finds

S.$
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ýpz(t)=E~eitz} Ef elt(x+Y)}

+00

ff eit(x+Y) f(x,y)dxdy (5.9)

where f(x, y) is the probability density of the pair of random variables (x, y).
Ifx andy are independent, random variables, fAx, y) = f 1 (x) f 2 (y), and one has

+00

pOz(t) =ff eit(x+Y) fA(x) f 2 (y) dx dy

+00 +00

= f eitxf,(x)dx f etyf 2(y)dy

-00 -.00

= Eetx I E f et Y }=px(t) pOy(t) .; (5.10)

Thus the characteristic function of the sum of two independent, random vari-
ables is the product of the characteristic functions.

"It was stated in Eq. (2.7) that the Fourier transform of a product is the
convolution of the individual transforms. This enables one to assert immedi-
ately that the probability density of z is given by

Jz) = fl (z) * f2 (z) (5.11)

These arguments regarding two independent, random variables can be extended
readily to the sum of N independent, random variables.

Another example that will be needed later is the characteristic function
associated with a cosinusoidal surface z = a cos(271 x/X) where X is the wave-
length and a the waveheight, If the elevation z is sampled at random positions
x and all values of x are equally probable, one may restrict the range of x to 0
<x < X and write p(x) = 1/'X. In this example Eq. (5.5) becomes

4(t)= EI etz I = EI eita cos(21Tx/X)I

=eita L.os(2vx/?X) dX

0

By using a simple change of variables one can reduce this integral to

• I"

Sd .... ... . . .. . . ... •I -,- -°
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21r

St)40 eiat cosO dO =Jo(at) , (5.12)

0

by substituting this function in Eq. (5.6) and using Fourier transform No. 20
in Appendix 2.1, one finds

"• 1 1z I<a

p(Z) (5.13)

S..... 0 , Z !z > a,.

J) It is evident that p(z) must vanish for I z I > a since a is the peak amplitude of
"lim

the surface. At first glance it might be surprising that I z- a- p(z) = 0, but

this is related to the fact that the slope of the surface vanishes at z = ±a. The
factor iF' is the required normalization factor for a probability density.

5.3 The Probability Density for Functions of and Sums
"f and Products of Random Variablea

"Every detection system requires the performance of mathematical opera-
tions on random variables. It is the purpose of this section to show how one
can compute the probability densities of the results of these various operations.

As a simple beginning, suppose that one has a device such that the out-
put y is a known function y = y(x) when the input has the value x. If x is a
random variable with a probability density fAx), y is also a random variable
with a probability density g(y), say. The relationship between these two den-
sities can be found readily by considering the graph in Fig. 5.1. If x falls in the
interval dx, y falls in the interval dy, so the probability of these two events
are equal. Hence

gOy) dy = fx) dx (5.14)

or

dy

In applying this formula it must be remembered that the inverse function{ x = x(y) may not be single valued so that more than one interval dx corres-
ponds to a given interval dy.

Consider, for example, the square law device y = ax2 illustrated in Fig.
5.2. For any given interval dy there are two intervals dx located at tx and -x.
Now there is no necessity that A(+x) A-x) so one must write
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JY

dyl

0 dx

?I

Figure 5. I-The relationship between two probability densities.

/ dy--ax
2  I

dx dx

Figure 5.2-The response of a square-law device, y ax2 .

8(y) dy = [LKx) +A-x) ]I , O0x<o< , 0<y<oo. (5.16)

As a special but interesting case, suppose that

I_x_ 2 /2
Ax) = 72- e1

i.e., that x has a gaussian distribution with mean zero and standard deviation I
a. Now ify = .-', dx/dy = %ax, so from Eq. (5.16),

g2y(x ) j = - /2 O
2

TV aaX
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or

(y) "e-yl2a 2  (5.17)

This distribution is a special case of a more general distribution known as the
chi-square distribution that is of great importance in statistics.

One has a ready check on his algebra since fg(y) dy must equal one as

can be seen from Eq. (5.14). One notices that g(O) is unbounded although it
can be integrated.

Another example of interest is the sinusoid y(x) = a sin(2irx/X) shown
in Fig. 5.3. Since all values of x are equally probable, one may take advantage

* of the symmetry of the curve and consider only the range of x .-X/4 4x 4 +W14
J and let 1(x) = 2/X, a constant. From Eq. (5.14)

,x = 2/XA) =(x) dy (2ira/X) cos(2nx/X) (as a function of y)

or

9(y) lyl~a

ifv N/ -y

in agreement with Eq. (5.13) which was derived from a consideration of char-
acteristic functions.

y

Figure 5.3-The sinusoid, y(x) a sin (2w xlx).

g 4

1 ' I-
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Equation (5.14) was derived from intuitive considerations based on Fig.
5.1. It can be derived more formally from mathematical considerations based
on a function of a function. This approach is desirable since it enables us to
extend the development to two dimensions more readily. One has formally

,"f(X) d~x = ffx(y)] d-x-dy = gfy) dy (5.18)

dy

where

AV=ftx(y)] (5.19)

In order to interpret g(y) as a probability density it may be necessary to take
the absolute value of dx/dy. There is one complication that must be watched
since the inverse function x(y) may not be single valued. In this case the range
"of x must be divided into regions ir which x(y) is single valued. The values of
x are independent so one can sum the values of g(y) for each of these regions
as in Eq. (5.16).

It one has two random variables x, y which have a joint probability
density f(x, y), and if one computes a new pair of variables r, s from x, y,
the joint probability density g(r, s) can be obtained from a generalization of
Eq. (5.18). One has the identity

Ax, y) dxdy = fjx(r, s), y(r,. s)] a(x' Y) drds

where a standard notation for the Jacobian of the transformation has been
used. Hence, the probability densities are related by

g(r, s) = f[x(r, s), y(r, s)A (, I (5.20)

Since the inverse functions are involved, the (x, y) plane must be divided into

regions in which the inverse functions are single valued whenever this is
! necessary.

Webb (1956,1962) has applied this transformation to find the probabil-
ity density of a product. For this purpose one can set

s~y } (5.21)

r=x .

The Jacobian of this transformatioi is l1r, so

g(r, s) = (r, sir) Ir ,r >>- 0.

i_.
- •• ,



SEC 5.3 MISCELLANEOUS TOPICS IN PROBABILITY THEORY 93

The joint distribution can be integrated with respect to r to get the marginal
distribution which is the prc i.oility density p(s) of the product s. Th~s yields

+00 +00

p(s) f g(r, s) dr f Ar, sir) d(ln r)
0 0

These integrals can be extended to negative r by adding a term t(-r, .s/r) to the
integrand. As an example, suppose that x and y are independent random van-
ables each of which have a gaussian distribution with mean zero and variance
a. The inverse of the function s is not single valued since the values of s in
quadrant I of the (x, y) plane are repeated in quadrant III, If we restrict the
integration to the first quadrant, one has since r = x,

Cp(s) 
- 1|a r'X 2  ] d(In x).

P I(S =ý7rU fexp _ X

This integral has the value

where Ko(') is the modified Bessel function of the second kind. Integration
over the third quadrant gives the same distribution of s so the value pl(s)
should be doubled. Finally, the symmetry of the probability densities for x
and y demands that p(s) be symmetric in & Hence, pl(s) is applicable in the
second and fourth quadrants, and one has

p(s) = --- -- o<s<+0 . (5.22)

One can certify that

f p(s) ds = 1

It is left as an exercise for the reader to show that if .(x. y) is the bivari-
ate gaussian distributioi, of Eq. (3.33), the probability density of the product is

p(s) K OA-e-al2s Ko(al Is I) . (5.23)

I -.

+ . ..+ .. .. .. . . . . . . . . . . . .- - t " •+
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Equation (5.23) contains (5.22) as a special case when al 2 = 0. The asymp-
totic form of Ko(') contains the factor exp(-al I I s ) which always domi-
nates the factoi exp(-a, 2 s) since I at2 1 < a, I The probability density,', depends on the sign of the product a12 s as one would expect.

When one is concerned with the sum, product, or quotient of only two
variables, there is an alternate method of deducing the probability. This is the
method used in Sec. 3.7 to discuss the limiter., The random variables x andy
are portrayed on a two-dimensional graph and lines of constant sum, product,
or quotient are drawn as in Fig. 5.4a, b, c. In each of these cases the probabil-
ity that the sum, product, or quotient, z, of the two variables be less than Z is

P(z < Z) = ff f~x,y) dxdy , (524)• ~~(shaded area) (.4

Swhere the shaded area is portrayed in Fig. 5.4a, b, c, respectively. If the
probability densityf(x, y) contains two dimensional delta functions, one must
exercise care in defining the shaded area to exclude these points if they fall on
the boundary.. The integral in Eq. (5.24) yields the cumulative distribution2

F1 (Z) which can be differentiated to give probability density.

5.4 The Rayleigh Distribution

There are many physical situations that yield a probability density
"known as the Rayleigh distributior. Baron Rayleigh (1937) obtained this dis-
tribution by considering the amplitude of the sum of a large number of sinu-
soical pressures having equal amplitudes and random phases. Alternately, one
can obtain this distribution by considering random walks in two dimensions.
The displacement of a particle in a plane is the result of a large number of
separate displacements, each having the same magnitude but with arbitrary
orientation. A moment's reflection shows that these two processes are
equivalent.

Another method of obtaining a Rayleigh distribution is to consider the
probability density of the magnitude R of the distance P where the coordi-

nates of the point (x, y) are independent of one another and each is governed
by the gaussian distribution

p(x) = l_0 exp(-x 2/2q2) " (5.25)

The easiest way of obtaining the answer is to calculate the cumulative
distribution for R from an area integral as in Eq. (5.24). In this case one has
2 At this point the distribution between the random variable z and the value of this vari-

able Z has been introduced again.

I

- *-.~ - -l- 3
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y

x

(a) DOMAIN WHERE THE SUM OF TWO VARIABLES IS LESS THAN Z

yy

xy=z

Y=" L
xy z

(b) DOMAIN WHERE THE PRODUCT OF TWO VARIABLES IS LESS THAN Z

(c) DOMAIN WHERE THE QUOTIENT OF TWO VARIABLES IS LESS THAN Z,
A POSITIVE NUMBER

Figure 5.4

&
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-a 2 1r

P(R<a) j rdr • 2-- exp(-r2 [2o2 ) dO

0 0

where

X2 +y2 r 2

tan-'(y/x) 0

This integral is easily evaluated to give

P(R <a) = [1-exp(-a"/2u2 )]

or

p(R) =: exp(-R 2/2a') . (5.26)

By virtue of the definition of R, p(R) = 0 if R is negative.
The probability density Eq. (5.26) is known as the Rayleigh distribution.

The mean square value of R is 2ou which is what one would expect from the
Pythagorean theorem.

5.5 The Envelope of a Narrow-Band Gaussian Noise

Suppose that one has a linear filter which passes a narrow-band of fre-
quencies of width WV centered about a frequency f&. If the input to this filter
is white, gaussian noise, the output may be described as narrow-band gaussian
noise. When the output is viewed on an oscilloscope, one sees a signal that
looks like a sinusoidal wave except that amplitude and phase are changing
steadily. When the filter response is narrow, one may represent the output
realistically as

F y(t) = R(t) cos[wot + CFt)j (5.27)

j or

y(t) = a(t) cos Cowt + 0(t) sin wot (5.28)

where

a(t) = R(t) cos PF(t) (
0(t) = -R(t) sin 'P(t) .(5.29) JI



SEC 5 6 MISCELLANEOUS TOPICS IN PROBABILITY THEORY 97

Since the signals cos wot and sin wot are in quadrature, one would con-
clude from the arguments of the preceding section that if a(t) and •(t) are in-
dependent gaussian variables of zero mean, R(t) is a random variable governed
by a Rayleigh distribution. This demonstration can be carried out rather
simply by using the Fourier representation of Sec. 4.5. The details are given
in many places, of which one might mention Rice (1944, pp. 81-84) and
Davenport and Root (1958, pp. 158-165). The latter authors show that the
frequency compenents of R(t), (b(t), a(t), and 0(t) are contained in a band of
width W centere.d on zero frequency.

The analysis of the behavior of the envelope R(t) of a narrow-band
gaussian function shows the following results. The probability density of R(t)
is the Rayleigh distribution, Eq. (5.26). The successive values of the envelope
are correlated, but one can say roughly that the period of fluctuatioi of the
envelope is I /I W. These properties of the narrow-band gaussian noise have
been used to simulate reverberation.

When CW pulses are used in sonar transmission, the returning reverbera-
tion often can be explained as the superposition of a large number of sinus-
oidal pulses of equal amplitude but random phase. This is exactly the model
that led Rayleigh to consider his distribution in the first place, and, as men-
tioned above, it is the distribution that results from a narrow-band gaussian
noise. The nature of the fluctuations can be regulated by selecting the band-
width W. The reader is referred to Eckart (no date, approximately 1946,
pp. 91-95) for an example of the use of narrow-band noise to simulate
reverberation.

5.6 Suggestions for Further Reading

The classical approach to probability theory can be found in the books
by Kendall (1948) and Jeffreys (1961). Both of these books are well written,
interesting, and contain many illustrations based on experimental data. The
modern approach to probability theory is described in the excellent book by
Cramhr (1946). There are many excellent books on this subject but it would
be invidious to name a few without naming all of them.

The reader who is interested in the Bayes theorem should consult
Woodward (1953) and the interesting historical survey by Fisher (1956).

PROBLEMS

5.1 Evaluate the mode, the mean, and the root-mean-square value associated
with the Rayleigh distribution, Eq. (5.26).

_ _ _ _..
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5.2 A sum, w = x + y + z, of three independent, random variables x, y, and
z is observed. It is known that

P(x=O) = 0.5 , P(y=O) = 0.3 , P(z-O) = 0.5
P(x=l) = 0.5 , P(y=1) = 0.4 , P(z=1) = 0.5

Py=2) = 0.3
(a) Prepare a table of the prior probabilities of the possible values of

the sum w.,
(b) Prepare a table of the posteriori probability that z = 0 for each

possible value of w.

5.3 Each of the two independent, random variables x and y are governed by
the probability density P(u) = 1, 0 < u •< 1. P(u) = 0 for all other values of u,

(a) Calculate the distribution functions for the sum x +y, the product
xy, and the quotient x/y.

(b) Calculate the probability density for the sum z = x + y from the
" J 3convolution P(z) * P(z) and from the Fourier transform of the characteristicS~fanction.

A.4 Random values (Y., Y2) are formed from pairs of samples(x 1 , x2 )of a
gaussian process, Eq. (3.29) by means of the linear combination

Y =x 1 cos0 +x 2 sin0
Y2 =-xI sin 0 +x 2 cosO.

The time interval t2 - t, between the samplesxI aridx 2 is held constant.
(a) Find the values of 0 for whichy 1 andy 2 are uncorrelated.
(b) What is the joint probability density of (yi, Y2) for the value of

"0 obtained in (a)?

5.5 Is it possible to generalize the results of the last example to N samples?
That is, is it possible to find an orthogonal rotation matrix 0 (bq) such that
the N variables

N

Yi biixi , i=1,2 .... N
j=1

are uncorrelated? Again the time intervals ti - t, associated with the samples j
xi and xi of the gaussian process are held constant,

5.6 Equation (5.1) is sometimes written as follows for two random variables
x and y:

x,y) A = P(X (y) P
where Px(y) is read "the probability density of the variable y for the given
value of x." Apply this form of the equation to the following problem. A si-
nusoidal function

i :-•- I
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"O z = zo cos 2irt
is sampled twice. The first sample, z I, is at the random time t = X, where P(X)
= 1, 0 X < 1, and P(X,) = 0, otherwise. The second sample, z2 , is at the time
t = X + a where a is a fixed constant. What is the joint probability density
P(z1, ,2)?

5.7 Use Eq. (5.20) to calculate the joint probability density of the variables

Y 1, Y2 defined by

YI =-/-r(xI +x 2)

" • ~y2 -- ' (-x, +x2)
N/2

where x, and x2 are governed by the gaussian process, see Eq. (3.2a), with N
, 2. Compare the answer with that of Problem 5.4.

5.8 What is the characteristic function of the gaussian probability density of
mean zero and standard deviation a?

5.9 What is the probability density of the sum

NZ X

of Nindependent, random variables xi? Each variable xi has a gaussian proba-
bility density of mean zero and standard deviation oi.,

5.10 What is the characteristic function of the Rayleigh distribution of mean
square value 2a"?

5.11 Frequently integrals containing the Bessel function Jo(x) can be approxi-
mated by setting J4(x) R5 exp(-x2 /4) for Ix I I. Use this approximation to
derive Eq. (5.25).

Hint. The projection on the x-axis of any one random walk is governed
by the characteristic function Eq. (5.12). The sum of the x-components of N
independent random walks has a characteristic function

•'N(t) = [Jo(at) ] N ýi exp(-Na' t2 /'+
where a is the amplitude of any one walk.

5.12 Derive an expression for the probability density for the ratio of two ran-
dom variables x, y by transforming to new variables s = x/y and r x and inte-
grating with respect to r to find the marginal distribution.

, , a
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5.13 (a) Apply the result of Problem 5.12 to the bivariate gaussian density

f(x, y) = j!L exp [-½(ax 2 + 2a12xy + a22y2 )2 .

21r

Here la0 1a1=a 22-a,2 2
(b) What is the expected value of the ratio x/y?

5.14 If a noise source moves by a stationary receiver, the root-mean-square
amplitude of the output of the receiver varies in time because of the variation
in range. This amplitude variation is sometimes removed by forming the ratio
of the time derivative of the signal and the instantaneous value of the signal.
The resulting ratio, which is sometimes referred to as the logarithmic deriva-
tive, can be approximated by a new time series

Sx(t + At, X) - x(,, X) I [x(t + At, X)
y~t, ~ x(t, X) At st A: L xQX) I

where At is a constant. Discuss the statistics of y(t, X) when x(t, X) is a gauss
process. I

(a) What is the probability density of y?
"(b) Does the mean square value of y exist?

5.15 Show that the analytic signal N(t) belonging to the narrow-band message
y(t) defined in Eq. (5.28) can be approximated by

[ ,R5) ei2 ffo' t d f iff(6 I ei2-ft df

E. when W -f,4

5.16 In an experiment the observed pressure, p, was converted to an intensity
level, I, by the formula I = 20 log(p/po), where Po is a constant reference
pressure. It was found that the experimental values of I satisfied a gaussian

distribution with mean I, and standard deviation Y.(a) What is the probability density satisfied by p?
(b) Show that the probability density found in part (a) approaches W

gaussian density as u becomes small. What are the values of the mean and the

standard deviation?

5.17 Consider Eq. (3.29) for the special caseN= 2 but suppose that the sec-
ond order moments Uii are not constant but have the form uii = 02 s(ti)
where s(t) is a nonvanishing, positive function of t. What must be the func-
tional dependence of /412 on the time in order that the stochastic variable
xl//lj be stationary?

___________

* I' . -
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CHAPTER VI

Measurements of Random Processes

6.1 Effects of the Finite Length of the Sample

In all of the preceding discussion it has been assumed tacitly that a
sample x(t,, X) of a stochastic process was available for all t(-- < t < -.). In

practice one can only sample a finite portion of x(t, X). Sometimes, even, the

experimental function with which one is concerned exists only for a finite
time and the extrapolation to infinite duration is an idealization. An example
of the latter situation is the reverberation that follows the production of the
sound signal.

Since one always has available only a finite portion of a signal, any
parameters that are calculated from this sample are themselves random vari-
ables and will have a distribution about a true value. As an example, suppose
one has a sample x(t, X) of an ergodic, stochastic process which as a mean

value zero and a standard deviation o, i e.,
j " +T12

(x(t,,X)) = x(tX) - lim I
XtX)T-+00 x(t, ) dt=O0 (6.1)

- T/2

and

+ T/2

~flim 1 f x 2(.t, X) dt 2

-T2

(6.2)

On the other hand, if one has available only a finite sample of length T, one

can compute a quantity, see Eq. (3.10),

;7/, f x(t, X) dt (6.3)
TI?

which by definition is the time average of x(-) over the time interval T.. This
quantity will not be zero in general, although one would expect that if many

101
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values of x'(t,X•) were determined for non-overlapping samples these in turn
would have an average of zero.

The average value of XT{t, X-)can be determined most readily by taking
the ensemble average of each member of Eq. (6.3) and interchanging the order
of integration and averaging. This gives

+ T/2

(1TY If (t, )) dt = 0. (6.4)

-T/2

The last step follows from Eq. (6.1).
The mean squtre value of x7(t, X) can be calculated from the following

series of equations which are almost self-evident.

"+T/2 +T/2

([xT<t,-)JX52 f x(tl,X)dtl 1  f x02,X)dt 2)

-"-/2 -T/2

+T12 +T/2

.K.f f X0 , )x(t2 , X) dt dt2)
-T12 -T/2

+T12, +T12

TI'I

+T/2, +T12I
- ,f C0 2 -tI)dtI dt 2  (6.5)

T12, -T12

It is not necessary to assume in the last step that the process is ergodic; only
that it is stationary in the wide sense.

The iterated integral can be simplified by rotating the coordinate axes450 by the following change of variables: t

N/2 "u1 = t2 + tl , N/ --ul = t2 - ti .- (6.6)

The two coordinate systems and the corresponding areas of integration are
illustrated in Fig. 6.1. Since C(-) is a symmetric function, Eq. (6.5) becomes

1 /N2 +I/V (T/,r/v -U21

<x(tX70 " >0 = N/jcU-2) dU2 du,.
0 I (T/x/)-ru 2 l 2
o) I

• i
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t2

T/2

-T/ 2 i_ t

T/2

-- T/2

• U2

~1

U'

(b)
Figure 6.I-Coordinate systems for evaluating ( [XQ,)! 2 ) and

corresponding areas of integration.

The factor two results from the symmetry of CQ-) and not from the change of
variables. The last integral can be evaluated readily. Upon introducing the
change of variable, Vr2_u 2 = r, one has

T

- (x• A)]J2  i= (l - -) ) d7r (6.7)

0
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This formula enables one to choose the sample length T necessary to achieve
prescribed limits on the fluctuations of the average value.

If T is large compared to the values of T for which C(r) is significantly
different from zero, the second term in the parenthesis is negligible. This is
rigorously true, for example, in white noise. When this approximation is
valid, see Eq. (4.20),

[ t A)] 2 Wo (6.8)
T '

where W, is the power density of the process at f = 0. On the other hand as
T-- 0, the right member of Eq. (6.7) approaches Q(0) which is the mean square
"value of the unfiltered noise.

This simple example illustrates a characteristic of noise studies that is
generally true, In order to calculate the average value of the random variable
X-r, 75) one needs only the distribution function of x(.). However, in order
to calculate the mean square value in order to estimate the fluctuations in

if one wants to study the fluctuations in the random variable XT(t, A)2 or in

xr-(, T,), one must know the higher order distribution functions defined in
Eq. (3.7) for n = 1, 2, 3, 4.

It is frequently convenient in experimental measurements to generate
the average of x(') with a simple RC-circuit as in Fig. 6.2. In this case Eq.
(6.3) is replaced by

0+ .
eo(t, A) = Lf e(u/RC) x(u + 1, A) du.. (6.9)

The parameter X has been introduced in eo(') to remind the reader that
eo(t, X) is a stochastic process which depends on the sample parameter A. If
one takes the ensemble average of both sides of Eq. (6.9), one establishes that I
(eo(t, A) ) = 0.

Proceeding exactly as in Eq. (6.5), one can show that

0+, 0+

(e, 2 ) = j' f el(t2+t1)lRCI C(t2 -t 1 ) dt, dt2 .

When the coordinates are transformed as in Eq. (6.6), one gets, after a little
manipulation,

(e0
2  I exp(- I T I/RC) C(r) dr - (6.10)

2RCJ
( eo ) =• ex(-I

LI

-/
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If RC is large enough, this may be approximated by

+00

"2(e2  C(r)dT. (6.11)
e, 2RC f

This last result can be given a physical interpretation since, by Eq. (4.8), the
* integral is the power density, Wo, of the input at zero frequency. The response

of the low-pass RC-fi'ter is down 3 dB at f= 1/2irRC Hence,

(e, 2 ) noise power passed by filter.

Since long integrating times, i.e., large RC, yield narrow band widths, long
integrating times lead to small fluctuations in the output ef the filter,

"One should note that the preceding analysis is not an analysis of a square
law detector, but is rather the analysis of the fluctuation of the output of a
low-pass RC-filter when the input is noise. The analysis is applicable to the
following situation.

Suppose that one has a sensor such as a depth gauge whose output is a
d.c, signal so, but that the output is contaminated by an additive noise n(t)
whose origin may be in the medium or in the electronic equipment associated
with the sensor. Thus the output of the instrument is a time series

x(t) = so + n(t) (6.12)

where so is the desired value and n(t) is the obscuring noise. In order to im-
prove the determination of s, one can filter x(t) with the RC-filter of Fig. 6.2.
If n(t) has a mean value of zero, one can reduce the fluctuations in the output
to as small a value as desired by increasing the time constant, RC. On the
other hand, there is a limit to how long one is willing to integrate since so itself
is usually a slowly varying quantity, Equation (6.11) shows the trade-off be-
tween instrument sensitivity and time response.

R

-~0

Figure 6.2-A simple RC-crcuit.

r " . . . . . I .. - . .. • . . . .. .. . .
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6.2 Filtering the Square-Law Rectifier

One of the standard methods of describing a noise level is the specifica-
tion of the mean square value of the time series. When the average is carried
out over an infinitely long sample, the result is C(O) as we have seen. A com-
mon experimental arrangement for this purpose is shown in Fig. 6.3. The
first filter will be omitted in the initial discussion.

RC-ILTER e, (t,

Figure 6.3-Illustration of the squaie-law rectifier and its fidter.

The output of the system is given by Eq. (6.9) if the x(') in the inte-
grand is replaced by x2(.). This gives

0+

e _(, A) f eu/RC x
2
(t + U, A) du . (6.13)

Upon taking ensemble averages, one finds

0+e0(teu/RC (x2(t + U, X))du

oý f 00

0+

C!
02 j_ eu/RC d (kC)

provided the process is stationary., Hence

(eo(t, X) u2  (6.14)

as it should. Thus, one concludes that on the average the RC-filter gives the
correct answer no matter what the value of RC. Some instruments, described
as True RMS voltmeters, form the square root of< eo > and thus provide di-
rectly a value of a.

The output eo(t, X) will fluctuate about its average value so one would
like to have a measure of this fluctuation. The root-mean-square value of this
fluctuation sets a limit to the sensitivity since one cannot hope to detect a
change in the output if it is masked by fluctuations. By definition the mean-
square departure from the average value is

* .
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([eo(t, X)- a 2 2 ) (e0
2 )-2 (eo)o 2 +o'

(6.15)
Seo 2 )-_d4..

In order to calculate eo2 one may write

0+, 0+(eo2 (t, X)) (C (f f el[(U, +.,2)/R C XtUAq+2'~

"0+, 0+ du 2 )
1 1~
1= 2 f f eI(ui+u2)IRCl ([x(t+ui'X)X(t+u2'X)]

2 )

"" " du1 dlu2 ..

In order to evaluate this integral it is necessary to know the fourth order mo-
ments of the process. This information is not usually available. One of the
reasons for the popularity of the gaussian statistics is that the fourth order
moments can be expressed in terms of the second order moments. The reader
is referred to Bendat (1958, pp. 288-294) or Freeman (1958, pp. 245-247)
for the details of the evaluation.

Bendat shows that if ( x(t, X) ) = 0, i.e., if the process is centered,

[x(t+ul, ?,)x(t+u2 , X)j 2 
' = C'(3)+2C2(u2-u1 ) . (6.16)

This enables one to use again the change of variable given in Eq. (6.6) to sim-
plify the integral. One finds

+00

(eol(t, X)> C2 (0) +9 I e-,/RC Ca(r) dr .. (6.17)

0

Consequently, the mean square deviation of the output about its mean value,
02, is, from Eqs. (6.15) and (6.17),

+00

([e 0 Q, i),_ 21 1 f exp(-IrI/RC)C 2(ir)dr( [eot, X -02]2 >= 00

Thus the longer the time constant, the smaller the fluctuations in the output.
Again if RC is large enough, one has

:. J
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+00

[eo(t, X)-- 212 R, P C2(r)dr . (6.18)
00f

It is profitable to compare Eqs. (6.11) and (6.18) for the case of a
narrow-band noise.. In this case C(T) is oscillatory and the integral in Eq.
(6.11) can be small even though C(r) does not approach zero rapidly. This is
not true for Eq. (6.18). Suppose this behavior is examined in more detail.

"If the first filter in Fig. 6.3 is a band-pass LRC filter, either parallel or
series, the autocorrelatiotn function of the output, x(t, X), is

C(')W= W0 f e-u/2Q [cos uv -1/l '- - sin uv l ,

.I ~~u •> 0 . :(6.19) "'

where

u = 27rfo-r
Q = Q of tuned circuit
W, = power spectral density of white noise input.

The derivation of Eq. (6.19) is left as an exercise for the reader. If we restrict
"the discussion to filters with a narrow band-pass, i.e., high-Q circuits, this equa-
tion may be approximated by

C(,r) = Wo'fo e-u/2Q cosu , u> .0

Q

Values of C(r) for negative T can be obtained by symmetry. It is easy to show
that for the latter approximation

f 2Q2
+00

and

-C2(r) dr 2 /2= (6.20)
2Q

-00

since Worfo/Q CO()o 2 andO I >.

| I_ _ _I

I -. ..
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One sees that the output of a low-pass RC averaging filter falls off as
IIQ2 when narrow-band noise is applied to it, but the output of the square
law rectifier followed by a low-pass RC filter falls off as 1/Q. If Eq. (6.20) is
substituted into Eq. (6.18), one finds

([e,(t, X) . 2 2 ) ] 4RC

or the root-mean-square fluctuation in the output about the mean value 0 2 is
ao/f-RC provided RC > Q/frfo.

6.3 The Effect of Sampling in Time

The operations described in the last section can be carried out with ana-
log devices. Frequently, however, one wishes to sample the time series at dis-
crete instants of time and carry out all calculations with these samples. One
may use (in principle) the exact ordinate values or quantize the sample values
into two or more levels. There is also a question of the time interval between
samples. Under some circumstances it may be desirable to use random time
intervals between the samples, but it is customary to use a constant interval,
At, between samples. This practice will be followed here.

Suppose that one has a sample x( t, X) of a stochastic process and that it
is desired to replace this continuous sample by an infinite set of discrete values

"x(nAt, X)• n .. -2, -1, 0, +1, +2,. .. (6.21)

One can obtain some guide to the best choice for At from a theorem known
as the sampling theorem (Shannon, 1949). This theorem states that if the
power spectrum W(f) of the process is limited so that W(f) = 0 for If I> W,
no information about x(t, X) will be lost if At < 1/2W. Since one is interested
in making At as large as possible, the sampling theoreni is usually stated in the
form that the time series x(t, X) should be sampled at At = I/2W.

The sampling theorem was stated in the last paragraph for a stochastic
process. A derivation will be given, however, only for a deterministic signal
which has a Fourier transform. This enables one to simplify the proof and em-
phasize the physical aspects. The reader is referred to Middleton (1960, pp.
212-215) for the extension to stochastic processes. Suppose that one has a
signal E(ý) with a Fourier transform E(f) such that E(J) =_ 0 for if I> W. The
function E(t) can be represented exactly over the frequency range -W < f < + W
by the complex Fourier series

jA, e-in i1W (6.22)

fl -. 00

-}-

e ,-
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where
S1 •w+W

,An =- An e+inwf/W df, n =, ±1, +2, ... (6.23)
2W$

The infinite set of coefficients An determinel E(f) uniquely.
It has been assumed that E(t) hasi(/) for a Fourier transform so one

may write, see Eq. (2.3),
+00 +W

E =JE(t) An() e+i2 ffft df = E(f)e+12irft df :. (6.24)

- pW

Upon comparing Eqs. (6.23) and (6.24) one sees that

An E (6.25) j
2W 2W,

Therefore, one only needs to sample the wave form at a time interval At =
1/2W in order to determine all of the information contained in the signal.

The sampling theorem is exact but one is left a little unhappy about the
"assumptions placed on the spectrum. Most real processes have a spectrum that
falls off rapidly at higher frequencies but there is not a sudden cut-off as
postulated. Perhaps a more realistic assumption would be to introduce the
sampling of Eq. (6.21) and determine what effect it has on the power spectrum
of x(t, X). The mathematical details of the answer to this question can be
found in Blackman and Tukey (1958).

If one samples a time series at a regular interval At, and a sinusoidal
wave of frequency flf > 1/ 2At) is present, the sampled values plot smoothly
as though they were representative of a wave of frequency lower than 1/2At.
This phenomenon, which is well known, is illustrated in Fig. 6.4. As a result
when a stochastic process is sampled at regular intervals At, and a power
spectrum is computed, the power at frequencies greater than 1/2At appears
in the computed power spectrum at the frequency between zero and I/2At.
The relationship between the true frequency of a spectral component and the
apparent frequency can be illustrated graphically as in Fig. 6.5. The frequency
fN in this figure,

fN = 1/2At, (6.26)

is referred to as the folding frequency or, more frequently, the Nyquist
r frequency.

S.. ... .. . ,,- . . .. .. - -
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" V

Figure 6.4-Sine waves of different frequencies with
the same set of equally spaced sample values.

WYf)

FOLD DOWN

FOLD UP VFODDON FODU

01N / f 2N \ 31 / f

f 2fN- 2f VW f V 4+f

(a)

W(f)

0•'+2fN f 4f, 2IN . f f

2fN- f

4fN- f

(b)

Figure 6.5-Pictorial description of a folded spectrum.
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As illustrated in Fig. 6.5, the power density Ws(f) at frequency f of the
sampled process, is related to the power density W(f) of the unsampled process
by

00

Y) = WY) + [W(2nfN +.f) + W(2nfN -f)] • (6.27)

n=l

In order to enhance the physical interpretation of the folding concept, Eq.
(6.27) and the illustration in Fig. 6.5 are given for a power spectrum that is
restricted to positive frequencies.

The illustration of Fig. 6.5 offers a new way in which to view the sam-
pling theorem stated above. If the power spectrum I4M is identically zero for
I f I>fN, there is no power "folded back" into the interval 0 < If If<fN and
no distortion results from the sampling. This may be phrased in another man-

"ner in order to provide emphasis. When a time series is sampled by an infinite
set of equally spaced values, as in Eq. (6.21), there is no loss of information ifW(f) = 0 for If1> 1/2At. Further, it can be shown that the original signal can

be reconstituted exactly from the sample values (Goldman, 1953, pp. 67-69).
In the extreme case where the sample interval At is much too large for

the process being sampled, each sample value is independent of the others and
a smooth curve drawn through the sample values will not bear any resemblance
to the original data. Figure 6.6 gives an examplei of this error. The top curve
"is a graph based on sample values with At = 100 minutes. The second pair of
curves shows curves based on a sample interval of 10 minutes, while the third
curve shows the results of decreasing the sampling interval to one minute., All
of these curves are essentially similar since the adjacent samples are uncorre-
lated. It is only when the sampling interval was reduced to six seconds that a
meaningful sample was obtained from which the original data could be
reconstructed.

In the discussion of sampling it has been tacitly assumed that the noise
was a broad-band noise as illustrated in Fig. 6.5, In most cases of interest in
sonar applications, the noise is a narrow band of width W centered about a
frequency fo. A blind application of the sampling theorem stated above would
lead one to assert that the time series must be sampled with At = l/2(fo + W/2).
Clearly this seems in error since the narrow band noise can be looked upon as
a sinusoidal signal of frequency f, which has both amplitude and phase modu-
lation. The frequency spectra of the amplitude and the phase are restricted
essentially to the frequency band I f I < W/2. Hence, there should be no loss

'This figure is reproduced from Hg. 4 of a paper by Webster (1964) who very kindly
gave permission for the reproduction. The ordinat2 is the bearing in degrees of a velocity
vector.

S#~~~4 I v.,. ,
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Figure 6.6-An example of the effect of sampling
a time series with too large a sampling interval.

of the infornation contained in the modulation if each of these modulation
fuictionswere sanplcd ata time interval of 11W, making a total of 2W samples
per second. A pro, r of this assertion is given by Kohlenberg (1953).

A large numb,.r of papers have been published in which the problem of
analyzing narrow-bancs noise samples is discussed. In the argument above re-
garding the necessity of 2W samples per second to represent a narrow-band

;j ,
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signal, appeal was made to the amplitude and phase modulation functions.
This is equivalent to using the analytic representation of the real signai and

.• ... sampling the real and the imaginary parts of the analytic signal each at a rate,

of W samples per second. In fact, one of the practical schemes of sampling
narrow-band signals requires the construction of the Hilbert transform, i.e.,
the imagiiiary part of the analytic signals.

Normally the sampling of a time series is not an end in itself, but the
sample values will be used for some purpose. One may wish to reconstruct
the original signal at some later date or one may wish to approximate a cal-
culation of a cross-correlation integral by a sun' ,f products of sample values.
The first problem is referred to as interpolation and has an extensive literature.
The reader can refer to a paper by Kohlenberg (1953) and one by Bonnet

(1965a). The second problem, which is of immediate interest in signal proc-
essing has been considered by Duflos (1964) and van Schooneveld (1965).

It is obvious to the reader that the sampling theorem is valid whether

the independent variable is time or distance and that the theorem can readily
be extended to a wavefield in three dimensions. In the latter case one can use
a three-dimensional grid of sample points. The details of this generalization

have been given by Stocklin (1963a, b).

KI 6.4 Suggestions for Further Reading

A fundamental paper on the effect of sampling and one that is easy to
read is Davenport, etal (1952). The book by Goldman (1953) has numerous
formulas pertaining to sampling in the frequency and the time domain. This
"book contains many references to the literature and some interesting material
on the Hilbert transform.

A recent development in computer programming called the fast Four-
ier transform (FFT) provides an alternate method for computing power
spectra. In this program the Fourier transform is computed directly from the
sampled data points and the power spectrum is obtained from Eq. (2.9). The
reader is referred to the paper by Cooley and Tukey (1965) for details.

PROBLEMS

6.1 The bandwidth of a filter is sometimes measured by using a wide-band
noise generator whose output power density is a constant equal to Wo from a
few Hertz to, wy, one megahertz. This noise is passed through the filter and
the total integrated power (0 is measured at the output of the filter. The band-
width of the filter is defined as Af (= b/Wo • Apply this definition to the band-
pass filter of Problem 2.1 and compare the resulting value of Af with the band-
width between the 3 dB points of the frequency response.

V 4 - 0~ ,. .v-
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6.2 A stationary, stochastic time series x(t, ?X) with autocovariance function
Cx(r) is smoothed by forming an average

N

'N Ly~t)..).k.2
n=1

where the r, are constants such that rm * Tn, m n :t

(a) What is autocovariance function Cy(r) of the new time series
y(t, X)?

(b) Specialize your answer to the case rn = nAt and N = 4.

6.3 A stationary stochastic time series x(t, X) is used to construct a new time
S~series

y(t, X) x(t+At, X) -x(t)

which may be thought of as an approximation to the derivative of x(t, X) pro-
vided At is small.

(a) Show that

SC(-) - 1c3r2C )/WaT

"(b) Relate the power spectrum of y(t, X) with the power spectrum of

x(t, X) by partial integration of Eq. (4.8). State any assumptions regarding
Cx(r) that are necessary to justify your development.

6 4 The telationship between the power spectrum ofx(t, X) and the spectrum
of its derivative was obtained in an approximate manner in the preceding
problem. This relationship can Llso be obtained by differentiating Eq. (4.27)
term by term whenever this is justifiable. Carry through the formal details of
this argument and obtain the power spectrum of the derivative.

6.5 Evaluate exactly the integrals

+00 +00

f TC()drand f C"(r)dT
-00 -00

when C(r) is given by Eq. (6.19).
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CHAPTER VII

The Detection of a Known Signal in a Noise Background-Single Channel

Part A. The Matched Filter

7.1 Intuitive Methods

The problem of detecting a signal of known shape in a noise background
will be discussed at some lengthl for the case of a single channel, since the
mathematical methods are relatively simple. Further, the problems that arise
in the multiple channel systems are generalizations that can be understood

better after a discussion of the single channel case.

It has been seen that the noise output of any device can be characterized
• ,, ,,partially by the power spectrum W09) whose Fourier transform is the covari-

$ ance function C(r). Equation (4.7) yields, for the special case r = 0,

C(0) = f.0 IV(f)df . (7.1)

Now the value of the covariance function for zero lag, C(O), is the mean squdre
value of the noise. Hence, an assertion about the root-mean-square amplitude
of a stationary, stochastic time series is really an assertion about the total

power in the series. Therefore, since W(f) is a non-negative function, Eq. (7.1)
shows that any filtering that is applied to the noise will reduce the mean-
square amplitude of the noise. Also, as shown by Eq. (4.37), any filtering will

reduce the probability that a sample value of a gaussian noise will exceed any

preassigned value. Consequently, the first step in processing a signal contami-
nated by noise is to filter it with a band-pass filter centered about the domi-
nant frequency associated with the signal.

One can give a qualitative, intuitive answer to the question of how wide
the pass-band should be. On the basis of the argument presented in the pre-

ceding paragraph one would expect that the pass-band should be as small as

possible compatible with a minimal distortion of the signal shape and loss of

energy content. For example, if the signal were a sinusoidal pulse of long dura-

tion, one could use a filter with an extremely narrow pass-band centered about

the signal frequency and reduce C(0) to an acceptable level. The price that

one would pay for this reduction in C(O) is increased detection time since, as

116
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the Q of the filter becomes larger, the time required for the signal level in the
output to build up becomes longer. However, as one works out various ex-
amples, one will discover that this intuitive answer is not always the optimum
answer.

When the peak amplitude of the signal is comparable to the square root
of C(O), one becomes most hesitant about decisions regarding the presence or
absence of a signal. This hesitancy will exist whether the output of the detec-
tor is presented on a paper recording, a cathode ray oscilloscope, or as an
audible signal. Often one has the feeling that if one could look or listen a
second or third time one could arrive at a better decision. When the signal is
presented on an oscilloscope tube or aurally, one begins to rely on the human
memory to compare successive signals in an effott to increase the reliability
of detection. This is a form of time averaging over and above the filter men-
tioned above and it could be built into the system. For the present, however,
the discussion will be restricted to the possibility of only one "look."

7.2 Analytical Solution

It was argued above from qualitative considerations that one should use
'-I., a band-pass filter as narrow as possible compatible with the energy spectrum

of the signal whose detection is sought. Fortunately, this statement can be
made more explicit by virtue of a paper by Dwork (1950)'. The following
analysis follows parts of this paper rather closely, and the reader is referred to
it for more details.

Suppose that one has a linear, passive device whose frequency response
is Y(.) as i,,scribed in Fig. 2.1 and Eq. (2.12). The input to this filter is the
"linear suma of a noise signal x(t.. A) with power spectrum W(I) and a signal E,(t)
whose wave shape is known. The output signal.Eo(.) in the absence of noise
is given by (see Eq. (2.5))

+00

-l E°(t-)+ E0(t+) J Y(t) E(fi) ei 2ft df (7.2)

It seems likely thqt one could replace the term on the lcft by ],(t) for
all transfer functions Y(f) that correspond to experimental equipment. How-
ever, since the unknown function Y(]) will be determined so as to maximize
a signal-to-noise ratio, it is well not to restrict the class of functions by requir-
ing a continuous output.

Denote by S the maximum value of I Eo(t) I considered as a function of
time.

This is not the earliest paper on the subject. Soltions for special cases date back to

World War !!.

I - .. . . .. . - . .. .-
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The total power in the noise at the output of the network is denoted
N2 and is given by

+00

N2 = k(tfY(/) 12 df (7.3)

As pointed out in the discussion following Eq. (7.1), N is the root-mean-square I
of the output signal when noise alone is present. Therefore it appears quite
reasonable to take the ratio S/N as the measure of the signal-to-noise ratio and
to search for the function k(t) that maximizes this ratio. The reader will notethat S is defined in the absence of noise and N is defined in the absence of

signal.
Dwork asserts and proves the following theorem:
The maximum possible value for S/N at the output will be obtained if,

and only if, we set 2

Yf) _ t*)e-1i2fr (7.4)
W(t)

(T any real number), and the maximum value of S/N so obtained is

"':,.M = If •k) 12 [W(/)]-ldf (7.5)

Since the proof of the theorem presents an interesting example of the
mathematical techniques of analysis of the response of a system to noise, the
proof of the first part of the theorem will be given in detail. The reader is re-
ferred to the original paper for a proof of the "only if." It will first be shown
that the maximum value SIN may have for any filter response is M. Secondly,
it will be shown that if the filter response Y(j) is of the form given in Eq. (7.4),
the resuiting value of SIN is greater than or equal to M. These two demon-
strations guarantee that the prescribed filter yields the maximum value of SIN.

In order to allow generality in the class of filters considered in the anal-
ysis, it has been assumed that the output EoQt) of the filter may have a finite
set of discontinuities. Consequently, a statement about the maximum value of
I Eo(t) I must be phrased as the maximum of the pair of values iEo(t-) I and
I Eo(t+) I since the maximum might occur at a point of discontinuity if one
exists. For all values of t

I2 f one wishes to preserve physical dimensions, a factor of one ampere must be inserted
on the right.

-- -- A •
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i Eo(t) I < larger of the numbers I Eo(t-) I, 'Eo(t+) I

+00

j. f€ I k (f) E• io df. (7.6)

By virtue of the definitions of S and N one has

:; -I d

2

N < ... +0 (7.7)

Schwartz' inequality, Eq. (3.19), will be applied to the numerator. It is de-
sirable to write the integrand in the following form-'

This enables one to write the following inequality:

F +00 2

_fM(t) 2

f-00so that Eq. (7.7) becomes

+00

for any ilter response. There remains only the task of showing that the
equality is achieved for the filter response defined in Eq. (7.4).

Now, by definition, S is the maximum value of I Eo(t) I for all t, so that
Sfor the particular value of t = T.

- _ __"_ _ _ _ _ _ -~
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S i> maximum of I Eo(T-) l, 1 Eo(T+) I
S• k [E 0o(T-) + E0 (T+)]

The last term on the right is given by Eq. (7.2) for t = T, so

s > L (•f)E k{i)e+i21rfTdf,. (7.9)

If Y(t) is given by Eq. (7.4), the integral on the right becomes equal to M2 as
seen from Eq. (7.5) and also, in this case, to N2 as seen from Eq. (7.3).
Consequently,

S =NS 2  N2 =MN

&
1

jJ so

S/N > M. (7.10)

Equations (7.8) and (7.10) are compatible only if S/N M as asserted in the
theorem. The meaning of the hitherto unspecified parameter T is now under-
stood. It is the time at which the output of the filter achieves its maximum
value. If one is not concerned with physical realizability, T may be any real

number.1 This is an extremely important theorem but one must be careful to
understand what it does not say as well as what it does say. For example, a
system designed by this theorem is not a detection system in the strict mean-
ing of this expression since no judgement is offered regarding the presence or
absence of a signal. The theorem only says that if one plans to build a detec-
tion system which will operate on the instantaneous values of the output, the
filter response given by Eq. (7.4) will produce a maximum value of SIN. De-
tection rules must be added to the system based on other criteria. Similarly,
the system does not provide a signal extraction system since one has no assur-
ance that Eo(t) will resemble Et) or represent a value of any parameter asso-
ciated with it.

The system design has been restricted in its generality by the assumption
of linearity. This assumption was implicit in Eq. (7.2). An example of one
of the effects of this restriction is pointed out by Mermoz (1964). He re-
marks that the nature of the noise enters into the solution only through the
power spectrum W(t). This function depends only on the second Order mo-
ments of the process x(t, A). It has been pointed out that the process is com-
pletely determined by the second order moment only if the process is gaussian.
Two processes may have identical autocovariance functions and still diffo" in

_ _ _ _ _
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the higher order moments. It seems unlikely that the same filter response
would be optimum for both of these processes.

7.3 Physical Realizability of the Solution

The parameter T is arbitrary unless one wishes to specify the instant of
time at which the output of the filter is observed, but it is evident that the
factor exp(-i2nJT) provides a distortionless time delay T in the output., One
would like to minimize this time delay as much as possible, but one is con-
"strained by the necessity of examining a certain amount of input signal in order
to provide the maximum value of S. Since a realizable filter can provide mem-
ory, but not anticipation, the energy of the pulse cannot be fully utilized be-
fore its termination. Another way of stating this is that there may be a mini-
mum value of T that is permissible in order to assure physical realizability of
the filter.

There is no assurance that the operator prescribed by the transfer func-
tion Y(J) can be realized easily by a physical mechanism. However, in the

•" •special case that the input noise power spectrum is a constant, Wo, one can
make more explicit statements. One can demonstrate a specific method of
achieving the desired filter and with the aid of this embodiment demonstrate
that the response satisfies the conditions of physical realizability,

A specific method of processing the data will be prescribed and it will
be shown that this method is equivalent to the filter response of Eq. (7.4)
when the noise power W(f) is a constant W'. The known signal E,(t) is used
"as a pattern for the construction of an image signal Et t) = E(-t). The incom-
ing message y(t) which is the sum of the noise x(t, X) and the signal E,{t) is
multiplied by the known signal EK-) and the product is integrated over all
time. As the position of the known signal EKQ) is shifted relative to y(t), one
obtains a new time series z(t) defined by

+00

z(t) = f y(T)EAT-t+Odr . (7.11)

The translation of F(T-t) along the time scale by an amount T is clearly arbi-
trary and will vary according as one is processing data in real time or is proc-
essing data that have been stored cither temporarily or permanently..

In order to utilize the techniques of Fourier analysis, it is necessary to
introduce the customary notation

YT (T) Y(T),I< To/2 (7.12)
0 O, IT I> To/2•

AI
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Since

+00 rt

YTo(') = yTo(fi) e+1'2irf dfi (7.13)
J

and

+00

EXr-t+T) = f Ej•f 2 )e+i2vf2(-rt+T)df2, (7.14)

-0 

If

Equation (7.11) may be written, after changing the order of the integrals,

ZrT(t) = To(fj )dff ,f)e-i2f 0(t-T)df2 X

Yf ( e T(7.15)

/0o e+12irf,+f2) 7dr .

The last integral is the delta function, 8(f +/f2). This enables one to evaluate
readily the integral with respect to f2 to give

+00

ZT°(t) =- f T(f'j) Ei-fI) e+i2f (t- T) df, (7.16)

-00I
Now Er) is a real function of time, so by virtue of Eq. (2.10),

! Z-f') = E•(f,) , (7.17)

and one sees that the operation described by Eq. (7.11) or, equivalently, Eq.
(7.16) is equivalent to processing the data with a filter whose response is

Ei*(J)e-i2lrfT . (7.18)

The parameter T, has served its purpcse and may now be allowed to approach
infinity.

The response given by Eq. (7.18) is identical, except for a constant fac-
tor, with the response given by Eq. (7.4) when W1) is a constant. The ratio

%I
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S/N is unchanged when the filter response is changed by a constant factor so
the goal has been achieved; that is, the goal of describing a specific embodi-
ment of the filter.

The operation of multiplication and integration described by Eq. (7.11)
is commonly referred to as a correlation detector. On the other hand, if
EAr - t + 7) is replaced by the image signal, the integral on the right becomes
a convolution between the signal yAr) and the image signal. For example, in
the special case that T = 0, z(t) = y(t) * E(t). The discussion of Eq. (2.14)
can be applied to show that if a filter can be designed whose impulse response
"is the image signal, the output of this filter will be z(t) when the input isy(t)
for some value of T.

When the power density W(j) of the input is white noise, the filter de-
signed by the present procedure is physically realizable in accordance with the
requirements set forth in Sec. 2.2 provided a modest limitation is placed on
the class of signal functions E#)t. Since ER is the transform of a real signal
E(t), the magnitude and phase of EM are even and odd functions of f, re-
spectively. The product A'i(J) exp(-i27ffi) has the same property, Therefore
condition number (2) is satisfied. One can see readily from Eq. (7.11) that if
the input Ar) is the delta function b(r), the output is given by

z(t) = Ei(-t+7) = E4i (t-0) (7.19)

One can select T so that this output will be zero for t < 0 provided there exists
"a time t, such that the signal Ejt), which serves as the basis for the design,
vanishes for all t > to. Further details of this argument are given by Dwork.

7.4 Further _iscussion of the Filter (Matched Filters)

Let us drop the assumption of white noise and return to the optimum
filter response defined by Eq. (7.4). In order to simplify the discussion the
parameter T, which is at our disposal, will be set equal to zero. If the input
to the filter is signal alone, the output will have an amplitude spectrum
I fEj) 12/W(t). On the other hand, if the input is noise alone, the power spec-
trum of the output is W(f) I Pf) 12 = jI E{) 12/W(t). Thus the design leads to
a filter response for which the shape of the output spectrum is the same
whether the input is s;gnal alone or noise alone. At first glance this seems
paradoxical, since one might think that the best filter would be one that pro-
duces a maximum separation between the output for noise alone and the out-
put for signal alone. A more careful consideration enables one to see the
explanation.

The clue to the apparent paradox is that an amplitude spectrum for the
signal was found to be the same3 as the power spectrum for the noise. These

3These statements sound wrong from the viewpoint of dimensions since dimensional
constants of unit magnitude have been omitted.

# t
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two spectra respond differently to changes in the filter response. When the
power density of the noise exceeds the energy density of the signal, it is clear
that the filter should reduce the respon.n of the system in this band of fre-
quency. There is a lunit to how much one should reduce this response, a limit *
that is reached when the amplitude spectrum of the output signal is equal to
the power spectrum of the output noise. Similarly, when the signal energy
spectrum exceeds the power spectrum of the noise at the input, one should
increase the response of the filter, but not indefinitely.

It is customary in the literature to denote the filter developed in Sec. 7.2
as a "matched filter." This term was first introduced by Van Vleck and Mid-
"dleton (1946), but Middleton (1960, p. 717) now prefers to call it a "matched
(S/N) filter" to distinguish t from filters matched on the basis of other criteria.
It is customary now to define a matched filter with respect to signal shapes
rather than detection criterion. For example, Tudin (1960) gives the follow-
ing definition. "If E(t) is any physical wave form, then a filter which is
matched to E0) is, by definition, one with impulse response

h(t) = kE(T0 -t) (7.20)

where k and To are arbitrary constants. A brief calculation will show that the
SIN matched filter described in Sec. 7.2 is matched to E(t) in the sense of
Turin if W(f) is constant.

Frequently, the matched filter is thought of as a device for pulse com-
pression so that a long pulse can be transmitted at low peak power. The effect
"of the correlator is to shorten the pulse and increase the peak power corres-

?pondingly. As a conmequence of this viewpoint, the output of he correlator
is often squared and integrated with a circuit whose time consKt is equal to
the width of the correlation function of the transmitted pulse. This approach
is of value when the power output of the transducer is limited by cavitation.

7.5 An Application of Matched Filters to Narrow-Band Signals

It is desirable to give a few details of the application of a matched filter
to a narrow-band signal since this will illustrate the distinction between co-
herent and incoherent detection that will be discussed in more detail in Sec.
8.4. The following illustration is applicable to any type of matched filter and
is not restricted to the specific matched filter that maximizes the s;gnal-to-
noise ratio.

Suppose that one transmits a narrow-band signal centered about a fre-
quency f&. It was pointed out in Sec. 5.5 that this kind of signal can be
represented by

E(t) A(t) cos wot + B(O sin wot (7.21) 7
It
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where A (t) and B(t) are functions restricted to a frequency range If I < W/2 <
fo = wo/21r. As long as the doppler shifts due to the motion of the target and
the volume and surface scatterers 4re small compared to TV, a filter may be
used in the receiving system to reject all noise signals whose frequencies fall
outside the bands - ± W/2). Consequently, the received message may he
expressed as

x(t) = a(t) cos cuot + 0(t) sin w, t . (7.22)

If one wishes to form a cross-correlation between a stored replica of the
transmitted signal E(t) and a firite sample of duration T of the received mes-
sage, one calculates

+7/2

CEx (r) = E(r) x(t+r) dt . (7.23)

When the product is expanded with tl e aid of trigonometric identities, one
has (omuting terms of frequency 2oo,)

S2Fx (r) = a(r) cos toot + 0(r) sin wto (7.24)

"where

t T12
j( j [A(t) a(t-r) + Bi(t) (t+r)] dt (7.25)

-/2

and

.+ T12

[A(t) 0(t+7) - B(t) a(t+r)I at . (7.26)
-TI?

It is evident from Eq. (7.24) that, after the frequency components in

the vcinity of 2 wo, are remo% ed by filtering, the output of the cross-correlator

is a narrow-band signal centered about wo. If one knows the carrier phase of
the transmitted signal relative to the signal modulation, the detection process
can be based solely on the function o(r) defined in Eq. (7.25). However, if the
phase of the carrier is unknown, one must work with the envelope of CEx(r):
Equation (7.24) may be written

CEx (r) = R(r) cos [w0o - F(2)! , (7.27)

:1•
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where

R 2 (7) = aNT)+ 1 (r) (7.28)

and

4(r) = tan-' W(T)/d(T1)] (7.29)

The significance of these operations for the signal-to-noise ratio can be
understood by assuming that the received signal is obscured by an additive
gaussian noise. After narrow-band filtering centered about the frequency
fo( •,o/21r), the noise can be represented by an equation like (7.21), say

EN(t) = AN(t) cos wot + BN(t) sin cot , (7.30)

where AN(t) and BN(t) are independent gaussian variables (Davenport and
Root, 1958. p. 160). The noise contii~butes to ench of the terms in the right
members of Eqs. (7.25) and 17.26). it conerent detection where one knows
the phase of the carrier and can work with (d(r) only, the two terms on the
right side of Eq. (7.25) will yield a coherent addition for the in-phase and the
quadrature components of the signal. The phase and quadrature components
of the noise, however, will be dependent so it is the sum of their intensities
rather than of their amplitudes that is important. This argument shows that
"when the phase of the carrier relative to the signal modulation is known, one
can enhance the signal-to-noise iatio 3 dB by using both the in-phase and the
quadrature components.

If the carrier phase of the returning signal is not kncwn, one must work
with the envelope R(r) of the output of the cross-correltor, This means in
turn that one must calculateiB(r) defined by Eq. (7.26). The computation of
S(r) does not add any iurther information about the sifnal E(t) but it does
double the effective noise in the output since the noise I ower contributes as
much to B(T) as it do-eC to ((T). Therefore, the signal-ti, noise ratio for the
case of no knowledge of the carrier phase is 3 dB less than the value when the
carrier phase is known, all other variables being the same. This difference is
significant, of course, only when the signal-to-noise ratio is low.

It is evident from this discussion that the shape of the signal which is
used to modulate the carrier should, Ie synchronized with .hie carrier for opti-

mum performance.. In echo ranginF one will not know the carrier phase of the
returning signal so that one will i.ot know the instant of time, --, at whichI (r) orR(7) should be sampled.

Nevertheless, there wll be situations such as in a closed communication
system or in a laboratory instrument where one has a knowledge of the carrier
phase relative to an external, stable clock so that one can know the time at
which the output of the cross-correlator should be bampled.

If
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7.6 Maximum Signal-to-Noise R1 1io for a Finite Number of Sample Values

The careful reader will have noted that in the solution of the optimum
If filter developed above, it was assumed that the experimenter had an infinite

sample of signal on which to operate. This assumption was disguised since
most of the operations were carried out in the frequency domain. However,
the solution of Problem 7.1 will show that, in general, all of the signal y(t),
-0 < t< +0, is necessary for the computation of the output, z(t), of the

ideal processor which maximizes signal-to-noise ratio. In practice, operations
are restricted to a finite sample of data so the question should be restated as
follows: "What filter response will yield the maximum signal-to-noise ratio
when the length of the data sample is finite?" Since the answer to this ques-
tion requires a knowledge of integral equations, the reader is referred to Hel-
strom (1960, pp. 95-121) and Middleton (1960, pp. 714-717) for the solution.

-) If sampled data are used in the processing of the acoustic signal, the
integral equation mentioned in the last paragraph is replaced by a set of simul-
taneous, linear equations which can be inverted by matrix algebra. In view of
the widespread use of time samples in signal processing, it seems desirable to
carry out the design of a processor that maximizes the signal-to-noise ratio for
a set of M sample values.

Suppose thatM values of the received messageyi = y(ti)(i = 1,2,... ,M)
are formed. Each sample valueyi is the sum of a noise component, Ni = N(ti, X),
and a known signal component, S, Normally, the message samples are equally
spaced in time. Although this assumption is not necessary for the present anal-
ysis, it will be introduced to facilitate the discussion. The received message is
processed by a linear operator of the form

M

z, biYi+i , i=... -1, 0, +1.... (7.31)

This linear function of message samples may be looked upon as an approxima-
tion to the convolution obtained in Problem 7.1 or to the integral in Eq. (7.11).

It is assumed in the present analysis that the shape of the signal and the
arrival time are known. The first assumption shows that the number of terms
in the operator (bi) are such that tM - t1 is equal to the duration of the signal,
since the use of fewer terms in the operator would mean that not all of the
signal contributes to the output while the use of more terms would only in-
crease the contribution of the r~oise. Consequently, the output signal, S, in the
absence of noise may be defined as

Ms L b/S, (7.32)

A=1

* . -lN-> _I §
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The noise level, N, in the absence of the signal is defined in terms of the
average of the square of the output. Thus N is the positive square root of

N2 = bi Ni+) = bi bk (Ni+i Nifk) (7.33)

,k= I

If the noise is stationary in the wide sense, this ensemble average is independent
of the subscript i. If the noise process has an average value of zero, the en-
semble averages on the right are the central second order moments, Eq. (3.30),
of the process, and one may write

M
N

2 
= bb Pik (7.34)

1,k-=1

The design of a linear operator (bi) that will maximize the signal-to-
noise ratio will be achieved when the ratio

(M b,2bi S
(S M

Li bbk Pik
l,k=l I

is maximized. This general problem of maximization will be restricted, how-
ever, by holding the numerator constant and minimizing the denominator.
This restriction is justifiable in view of the limited dynamic range of the sonar
system., The restriction is equivalent to fixing the output level that is desiredSfor the signal and minimizin3 the background noise that obscures it.

The problem of minimizing the denominator of the right member of Eq.
(7.35) while the numerator is held constant can be solved by introducing a
small variation in the operator coefficients. Let

S-l + c c

where e is a small, real number. The numerator will remain constant if the co-
efficients (c,) are subjected to the condition

L c1 S= 0= (7.36)

it
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The denominator will have an extreme value (which can be shown to be a min-

umum) if
M I

LY- (bi+ ecc)(bk+ Eck)Pi 0k = I
I,k=l

When this expression is evaluated and the symmetry of the second order mo-
ments, I./k, is utilized, one obtains

M

Th c bk lPlk = 0 (7.37)
S ) i,k= I

Equations (7.36) and (7.37) are mutually consistent provided

-z* MSPlk bk = Sj, j1,2 ... , . (7.38)

2k=1

The desired set of operator coefficients is found by solving this set of linear
equations.

If the source of the noise is a gauss process defined in Sec. 3.6, the ma-
"trix (alk) appearing in the probability density function, Eq. (3.29), is the in-
verse of the matrix (.iLk) of the second order moments. In this case the
solution of Eq. (7.38) is

b 2 ak Sk (7.39)
k=l

In summary, if a known signal is obscured by gaussian noise and the processing
system consists of the formation of a linear combination of M samples, the

F signal-to-noise ratio will be maximized when the coefficients of the operator
are determined by Eq. (7.39). If the noise is white, the matrix (alk) is diagonal,
alk = a 61k, and Eq. (7.31) represents a finite approximation to the matched
filter.

Part B. The Likelihood Ratio

7.7 Signal Detection as a Problem of Hypothesis Testing

It was shown in Part A of this chapter how one may develop methods for
maximizing the signal-to-noise ratio, but this process, useful tho,:gb it is, does

-•-

I1



130 SIGNAL PROCESSING OF UNDERWATER ACOUSTIC WAVES SEC 7.7

not solve the problem of signal detection. Some criterion for the decision,
"Yes, a signal is present." must be introduced. Presumably, one can introduce
a threshold, or limiting value, and decide that a signal is present wheitever the
output exceeds this threshold. Unfortunately, this approach is empih ical and
does not appear to offer a sufficiently broad foundation on which a theory of
signal detection may be developed.

A more fundamental approach to the problem of signal detection can be
achieved by considering it as a question of hypothesis testing. It was pointed
out in Sec. 5.1 that two hypotheses may be considered: H0 , no signal is pres-
ent, and H,, a signal is present.. It is assumed that these two hypotheses are
mutually exclusive and that one hypothesis is correct. In theory it is possible
to assess the prior probabilities of these two hypotheses before any measure-
ments have been made, although in practice this assessment may be extremely

difficult to justify. After the available measarements are analyzed, one can
assess the posterior probabilities of the two hypotheses. It is reasonable to
assume that in some sense the best decision is made when one selects that hy-
pothesis which has the greater posterior probability. It may be desirable to
depart from this decision rule in order to allow for other considerations such
as the false alarm rate or changes in the assumed values of the prior
probabilities.

These ideas can be expressed more concisely by using the formulas of
See. 5.1. In Sec. 5.1 the parameter 9 was introduced in the equations to
designate fundamental informatioiA such as depth of water, roughness of the
bottom, and the nature of the sea surface. This kind of information is still
relevant but the parameter d will be suppressed in order to simplify the form

of the equations.
The observation was denoted simply by the pirameter p in Sec. 5.1,

but for the present discussion it is desirable to delineate more carefully what
is meant by an observation. In the case of a single channel the observation
may be a recording of i time series x(t, X) over a finite time interval,
0 < t < T, but it is often convenient lo form discrete, equally spaced samplevalues of x(t, A). In the latter case one has a set of sample values as in Eq.

(6.21) with n = 1, 2, .... and the observation may be represented as a vec-
tor V in an M-dimensional space. In keeping with this point of view the
scaler parameter p will be replaced by a vector P• whose components are the
M observations.

When these changes in notation are introduced and the number of hy-
potheses is restricted to two, Eq. (5.3) becomes

P(HO II) = .11 o) P(i'lHo) (7.40)
P(I1)and

(
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• P(HI) P(V I HI)
P ... (7.41)

As mentioned above, the prior probabilities are related by

P(Ho) +P((H) = I . (7.42)

Z•imilarly, the posterior probabilities are related by

P(Ho I r) + P(HR I1) = 1., (7.43)

The unknown probability P() can be eliminated by forming the ratio of Eqs.
(7.40) and (7.41). The resulting equation and Eq. (7.43) can be solved for the
posterior probabilities. This yields

"P(HP(H,) I(,)] 1 (7.44)

and

P(H, 1 )= 1+P(g (-• - (7.45)
P(HI) '

"where the likelihood ratio, £4P), is defined by

Q•()= 2  (7.46)
P(V•IHo)

The form of Eqs. (7.44) and (7.45) can be made simpler if the likelihood
ratio is generalized to

L([•) = P(O I H, ) P(H1 ) (7.47):•P(V I Ho) P(Ho)

Further, it will be seen that this extended definition of the likelihood ratio
arises naturally in the development of Eq. (8.28). However, in order to cal-
culate L(P) one must endeavor to assess realistically the probabilities P(HI)
and P(Ho). This is extremely difficult to do since it involves answering sub-
jective questions such as, "What is the probability that a submarine is in the
sonar beam?" For this reason the discussion of signal detection oftcn is based
on the function Q(P). j

C-N
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7.8 Thresholds for the Likelihood Ratio

The simplest solution of the problem of threshold selection would be a
comparison of the two posterior probabilities P(Ho I 1p) and P(hi' I r)fol-
lowed by the selection of the hypothesis with the greater probability, Equa-
tion (7.43) shows that this criterion would lead to the conclusion that a signal
ispresent ifP(Hi I j) > 0.5. However, in view of the fact that other consider-
ations such as false alarm rate may suggest a change in the threshold, it seems

,, desirable to decide that a signal is present whenever

P(H. I P') >, P. (7.48)

where Po is a threshold to be determined later.1 The ratio P(Ho)IP(HI) that occurs in Eq. (7.45) is the ratio of two
probabilities and, therefore, is never negative. This means that P(HI 10 is aS"-,, monotonic function of the likelihood ratio 9/(i, and as R•(P) varies from zero

to infinity, P(H, I V varies from zero to unity.. Consequently, the inequality
Eq. (7.48) can be replaced by

Q(')> •o, (7.49)

where Q0 is a new threshold value.
A similar argument shows that P(Ho I Pý decreases monotonically from

unity to zero as Q(0-) varies from zero to infinity. The dependence of the two
posterior probabilities on Q( O) is shown schematically in Fig. 7.1.

If it be assumed that a value for the threshold, R0 , can be chosen in a
logical manner, a detector based on posterior probabilities can be replaced

10PHIV

iB O(H 0I7 l
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uniquely by a detector based on the likelihood ratio. Again, since Qn Q() is a
monotonic function of R(Oa, the inequality Eq. (7.49) ran be replaced by

/QnQ(V)>L=Qn 20

In many instancres the use of the logarithm simplifies the receiver design.

7.9ý A Simple Example

Before going further with the analysis of the likelihood ratio, it is well
to consider an example so simple that the mathematical analysis will not ob-
scure the concepts. Suppose that one wishes to measure the instantaneous
value of a signal S which may have the value zero or So, The hypothesis Ho is
that S = 0 and the hypothesis H, is that S = So. The measurement is compli-
cated by the presence of an additive random noise N whose value is governed
by the Rayleigh probability density, Eq. (5.26)

2p(N) -- 0- 2"N2 /o (7.50)
AN) 2

where a is the root-mean-square value ofN.

In the present example the vector P, the observation, has only one com-
ponent, V, given by

"V=N+S , (7.51)

and one wishes to reach a decision of the value of S from a consideration of

the likelihood ratio. If hypothesis Ho is true, S = 0 and V = N, Hence,

P(V I Ho) is simply Eq. (7.:0) with N replaced by V. On the other hand, if
hypothesis H, is true, Eq. (7.51) shows that N = V-So. Consequently, one
may use Eq. (7.50) for P(V I HI) provided N is replaced by V-So. It should
be remembered thatN is non-negative so that Vcan never be less than So. This
means that

=0 , O<V<So

P(V 1Hi) = ,0VS

-V 4!t) = exp{-{(V-So) 2
/o2},So < V (7.52)

The likelihood ratio, Eq. (7.46), becomes in this case,

0 , 0<,V< 1}(

(l-v !) exp{+(2v-lXSo/ o)2}, I <V (7.53)

-- U . 1.--
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where v = V/S., Some curves of Q(') versus v = V/SO are plotted in Fig. 7.2
for various values of (So/o)2, the signal-to-noise ratio squared.

7.10 The Probability of Detection and the False Alarm Rate

In general the likelihood ratio defined in Eq. (7.46) is itself a random
variable that is governed by the statistical parameters that control the noise
and the signal. Hence, it is proper to introduce the concept of the probability
density of R(M. Let

P [Q(P) IHo = probability density function governing £(Q when no
signa; is present (7T54)

SII
P R (Pt) Ill, ]=probability density function governing R(P) when a

signal is present. (7.55)

J(v) 2

0
0 1 2 3 4 5V/So,0

Figure 7.2-The likelihood ratio vs the message V

for a dc signal obscured by Rayleigh noise.
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Although it may be difficult to express these probability densities in a usable,
analytical form, it is possible to prove some general results that will enable one
to visualize their behavior.

The formula of conditional probability, Eq. (5.1), may be used to write

SP V (1•) I Ho ]P(11o) = P R (P)VP ) I [ H, P(IJ0) = P[Q(T)

and

P[ IH.o P(Ho) = P(i)

- P I iH, 1 ] P(H.) = P(T).

The ratio of the first pair of equations eliminates P [(P) ], the ratio of the
second pair eliminates P(r), and the ratio of the resulting equations eliminates
P(Ho)/P(H1). This yields the important result

P [ R(V') I H, P] 1 I I(•H,) £•).(.6
(7.56)P [ R(P7) Ho l:P(17I H.)

- Thus the two graphs of the probability densities of the likelihood functions
"cross at R(i) = 1, and P [ .(T) 11 H 1 is greater than P [ Q(I) i Ho ] when
Q(17) > 1. In this sense one may say that large vaiues of the likelihood ratio
are associated with the presence of a signal.

It is customary in the literature to introduce two kinds of errors. A Type
I error, or error of the first kind, occurs when one decides that a signal is pres-
ent when, in fact, there is no signal. A Type 11 error, or error of the second
kind, occurs when one decides that there is noise only when, in fact, a signal
is present. When signal detection is based on a threshold value Qo for the like-
lihood ratio, the probability of these two errors are

(Type I error) a P [ Q(VP) io ] dQ(i) (7.57)

Qo

Q0

(Type II error) ft P e [ k() IH. dk(). (7.58)

€0

The error of the first kind is often called the false-alarm probability and it
sometimes plays a basic role in the decision making policy. For example, if a

~~C-N
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ship's captain took evasive action every time R(i) > 2o, a high rate of false
alarms could be prohibitively expensive in time and material. Frequently the
concept of an error of the second kind is replaced by the detection probability

1d =I-3. Thus one has

Sd = 1-0 P [ (PI 1H.) ] dR(j). (7.59)
Zo

Equations (7.57) and (7.59) enable one to plot a graph of 0d versus a
with 2o as a parameter as illustrated in Fig. 7.4. A curve of this kind is often
called a receiver operating characteristic and the resulting diagram, Fig. 7.4, is
referred to as ROC curves4 or graphs. It is easily seen from the equations

j above that a =d = 1 when 2o 0 and a = Pd = 0 when o20 Further, the
slope of a characteristic is given by

d a = Ro (7.60)da

Different values of the signal-to-noise ratio yield different characteristic graphs.
A second family of curves may be drawn on Fig. 7.4 by drawing the curves
20 = constant. With the aid of these curves one can plot Pd or a versus signal-

-.. to-noise ratio for each value of threshold level.

7.11 A Second Simple Example

The nature of the ROC graphs can be demonstrated most readily by
working out a simple example. Suppose that one has a known signal S(t) which
may (hypothesis H, ) or may not (hypot~iesis Ho) be present, and that this sig-
nal is obscured by an additive, gaussian noise N(t) with zero mean. The pres-
ence or absence of this signa, is to be determined on the basis of M equally
spaced samples V = V(nAt), n = 1, 2,.. . , M, of the received message. Thus
the observation ;(=I+•) is an M dimensional vector whose components are

Vn =S, +N, , n = 1,2 .... ,M (7.61)

The components S, are known while the set of M values N, are governed by
the gaussian probability density, Eq. (3.29),

4 A large number of interesting ROC curves, both theoretical and experimental, are given
by Green and Swcts (1966).

t
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f(Ni,N2 .... NM) _ amin I ' '2exp - 2 amnNmNn . (7.62)
(27r)M/2 L

The probability densities P (r I H0) and P{J HI) are obtained from Eq.
(7.62), as before, by substituting Nm = Vm and N, = Vm-Sm, respectively.
Consequently, the likelihood ratio, Q(V), defined in Eq. (7.46) becomes

M M

S= exp am n VmSn - L amnSmSn}. (7.63)

m,n=l m,n~l

Although Eq. (7.63) is valid only for the highly specialized case of a sig-
nal whose time of arrival and whose wave form are known exactly, it can be
used to illustrate many of the features that characterize receivers designed to
.-Aculate likelihood ratio. It is evident from Eq. (7.63) that the statistics of

the noise background in the form of the matrix (amn) plays a prominent role
in the receiver design. This matrix yields a quadratic form in the signal com-

M

ponents and a bilinear form I amn VmSn in the message and signal

m.n= I

components.
In order to simplify the following expression let

M

Sa = 21 amnSmSn (7.64)

mn-= I

M

S'm = 21 amnSn (7.65)
n1l

M M

Ea = am,, VmSn = 2 VmSn. (7.66)

m,n=I m=I

When this notation is introduced and the logarithm oC R(i) formed, one has
the following simple form for the receiver:

Qn Q(i) = E. - Sa (7.67)
a2

Thus one evaluates the quantity Ea which is a linear combination of the M
observations Vn and adopts the hypothehisH, iffLa > Qn £o + 112Sa. Since the

4
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quadratic form, Eq. (7.64) is positive definite, the quantity %ISa is always
positive and may be thought of as a bias on the threshold value Qo. Q0The nature of the receiver can be understood better by considering the I
special case of white noise. In this case

amn = 8mn/lu (7.68) i

and

M

Ea = .L 1  VmSm . (7.69)
S• n = I

When this equation is compared with Eq. (7.11), it is seen that except for the
factor a-2, this is the matched filter, expressed in terms of finite samples, which
maximizes signal-to-noise ratio. Consequently, now one understands better
the role of Eqs. (7.65) and (7.66). Equation (7.65) effectively distorts the sig-
nal shape (S,) to a new shape (S',) such that the message (Vm) can be treated
as though it were obscured by a white noise.

Actually, this explanation of Eq. (7.65) is helpful to the understanding
of the nature of the receiver, but a comparison of Eqs. (7.29) and (7.65) is
more illuminating. The structure of the receiver which maximizes the signal-
to-noise ratio is identical with the structure of the receiver that provides a
measure of the likelihood ratio. Thus one can dispense with the rather strin-
gent assumption made earlier in this section that the time of arrival of the sig-

"'•... nal is a known quantity.. The output of the receiver is observed continuously
and whenever the output exceeds the threshold Qn Qo + '/Sa, it is concluded
that a signal is present. The basis for a choice of the value Qo will be considered
now.

The probability of errors of the first and second kinds can be computed
when one knows the probability density for the random variable Ea defined
by Eq. (7.66). A straightforward method of calculating this probability den-
sity is to evaluate the characteristic function defined in Eq. (5.5) and take the
Fourier transform as in Eq. (5.6). This calculation must be carried out for
each of the hypotheses. If hypothesis H, applies, that is, if a signal is present,
the characteristic function ýpo (t) is by definition given by

+00 Mp I(t)=E eitfa} f elt Z S'm(Nr + Sm) ftNiNN ..... N,.)dA7

.00 =

This M dimensional integral can be evaluated to give

p = eitSa - I.Sat 
2

.S -
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The Fourier transform of 'pj(t) yields the probability density

H)- ,E (7.70)

I (aEaP (E, I Ho)= -, 2i-r', e_"S (7371)

Thus in each case the probability density function is a gaussian error function
with standard deviattun -I, When a signal is present, the mode is shitted hi
the positive direction by an amount S,. The quantity S, is a measure of the
ratio of signal energy to noise energy. This can be seen most easily in the case
of white noise by using Eq. (7.68). As S. increases, the two probability den-
sities, Eq. (7.70) and (7.71), broaden, but their modes separate more rapidly
so a better resolution of the two hypotheses iesult.

Figure 7.3 is a plot of the two probability densities for Sa = 1. This il-
lustration shows how the two errors arise since no matter where one selects
the threshold for E,, the curve P(E, I Ho) extends to the right and P(E, I HI)
extends to the left of this threshold.

If a threshold value E0 is located on Fig. 7.3 and used as the criterion
for a decision, the false alarm probability is

04

03-

"02

.3 ý2 -1 0 .1 2 .3 .4

Ea

Figure 7.3-Probability densities for Ea ,vhen Sa 1.
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aJ P(Ea IHo)dEal = I-(Eof/" , (7.72)

E0

where'

_(X) exp(_t 2 /2) dt . (7.73)

Similarly, the probability of detection is

00

'd P(Ea IH,)dEa = 1- '{(Eo-Sa)lVaj}. (7.74)

As remarked before, when Sa is given a fixed value, Eqs. (7.72) and (7.74) pro-
vide a parametric form of a graph of Od versus a. A set of such curves is given
"in Fig. 7.4 for several values of Sa, a measure of the ratio of signal power to noise
power.. These curves show how the false alarm diminishes as the signal puwer in-
creases relative to the noise. Frequently, this figure is plotted using a logarith-
mic scale for the abscissa and a gaussian probabiiity scale for the ordinate.I o
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ligure 7.4- Receiver operating characteristics for the example of See. 7.11.

SThere are many definitions of the function b(x). The present notation is the one used
by Cramtr (1946) who refers to 4)(x) as tae normal distribution function.
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PROBLEMS

7.1 Consider a filter whose response is given by Eq. (7.4). Show that if the
input to this filter is a function y(t) Ahich has a Fourier transform .A), the
output, zQ), may be expressed as a convolution,

z(t) = G(t) * y(t).
(a) Give an explicit definition of the function G(t) in terms of the

signal shape Ej~t) and the formal Fourier transform of [IW(j)]"I.
(b) Show how the argument must be modified if [f41()]-` does not

have a Fourier transform.

7.2 It is permissiblc to process the signal E(t) defined in Eq. (7.21) by ex-
tracthg A(t) and B(t) directly from the signal., Show how this can be done.,
Since a(t) and P(t) are known functions, one can proceed directly with the
calculation of Eqs. (7.25) and (7.26). Discuss the relative merits of these twoS1 alternatives.

7.3 Show that the extreme value of the denominator of the right member of
Eq. (7.35) is a minimum when the operator is given by Eq. (7.38).

7.4 Show that when the operator (b1) :s defined by Eq. (7 39), the value of
(S/N)2 given by Eq. (7.35) becomes

Mf a x =L aii SiSi

7.5 Calculate a set of ROC curves for the example of Sec. 7.9.

7.6 Modify the example described in Sec. 7.9 by assuming that the noise has
a gaussian probability density of me. i zero and standard deviation a. Compare
the likelihood ratio for this case with those of Fig. 7.2.

7.7 Calculate a few ROC curves for the combination of signal and noise de-
scribed in Problem 7.6.

7 8 Should ih, sum, a + 1, of the probabilities defined in Eqs. (7.57) and
(7.58) equal one? Give reasons for your answer.

7.9 Derive Eq. (7.60).

7.10 Derive Eqs. (7.70) and (7.71).

I€. . % '.-
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7.11 The discussion in Sec. 7.11 is deceptive in that both E, and Se depend
on the noise level. Separate the noise level in the special case that a '5  =S6,n/a', where 6,n is the Kroneker delta and or' is the mean-square value of117 the noise. Suppose, further, that Sm = SoSm where So is the root-mean-square
value of the signal. In this case the threshold can be expressed in a form that
does not depend on the signal and noise levels as it did in Sec. 7.11. Plot a few
ROC curves for this example and trace a cqrve of constant threshold on this

figure.

7.12 Show that the inequality P(HI I > 0.5, see Eq. (7.48), is equivalent
to L()> 1.>I

7.13 A set of ROC curves are constructed on the basis of a threshold value for
some parameter Ea. Prove that the ROC curves are symmetric about the diag-
onal of slope -1 provided that P(Ea I H, ) is identical with P(Ea I HO) except
for a displacement along the Ea-axis and P(Ea I Ho) is symmetric about some
value, Ea M, say.

- J•,
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CHAPTER VIII

Objectie Criteria for Signal Detection

8.1 Introduction

The developments presented in the last chapter showed how one can
detect a known signal in a noise background. It was found that signal detec-
tion could be expressed in terms of a threshold, but the choice of this threshold
presented a serious problem since there was a conflict between the two kinds
of errors that arose in the detection process. Fortunately, when the funda-
mental approach is stated more broadly, as in this chapter, the logical basis for
a choice of the threshold b, omes clearer. Further, this extended discussion
provides automatically an answer to another problem that has not yet been
raised. There are many circumstances in which the signal is noi fully known
but contains statistical parameters for whose variation allowance must be
made. The correct way of averaging over these parameters is found in the
form of a generalized likelihood ratio defined in Eq. (8.28).

During the last 20 years David Middleton has written a series of funda-
mental papers which have placed the problems of signal detection on a solid,
theoretical footing. He has assembled his views in a monographic book (Mid-
dleton, 1960) which should be studied by everyone who aspires to a compe-
tence in this field. The following survey of his work leans heavily on Chapter
XVIII of this book and on the paper by Middlton and Van Meter (1955).

It was pointed out in Chapter I that one may be concerned with a sig-
nal detection problem in which a simple "Yes" or "No" answer is all that one
seeks. On the otner hand, it may be that one wishes to extract one or more
parcmeters of the signal. In the latter case one may still want to perform a de-
tection operation. For example, if a system be designed to determine the time
of arrival of a signal, and the system indicates an arrival time of, say, 20 seconds
after transmission, it cannot be inferred that a sign.A caused the indication.
An auxiliary circuit functioning purely as a signal detector can be used to
provide a statement, "Y--, there is a signal," or "No, there is no signal so
ignore the ir.dicated time of arrival.," In the case of marginal signals, and this
is an important case, it is advisable to separate these two functions in order to
improve the efficiency of each.

The following discussion will be facilitated by using the concept of sig-
nal space, observation space, and other spaces. These spaces may consist of a
finite or denumerable set of discrete points or of a continuum in an Euclidean
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space of finite or denumerable number of dimensions or of even less simple
spaces. Clearly, if one wishes to satisfy a mathematical reader, one would have
to define explicitly what one means by a space by assigning properties to it.
However, it seems sufficient for the present to give a few examples of these
spaces and to rely on the reader's intuition to furnish general meanings to the
statements. As a simple example suppose that the observer knows that at a
certain time he can expect a message which will be a sinusoidal signal whose

frequency will have one of five different, predetermined values fl, f2 .... I fs,
and the frequency that is present determines the signal (Honnest-Redlich,
1950; pp. 44-45). The signal space consists of five discrete points. More
realistically, the signal space may consist of five intervals of widths A! cen-
tered about the five frequencies f,. Again, a sensor may be used to frequency
modulate an oscillator so that the signal space may be a continuous interval
(fa, fb) and the received frequency is a single valued function of the variable
detected by the sensor., In each case one may speak of a signal space and usu-

p ally one can assign a distribution function or a probability density which will
give the probability that tule signa" will have any predetermined value or range
of values.

It will be desirable to carry out integrations over the signal space and
the other spaces. It is evident that one cannot give mathematical precisioll to
statements unles3 the integrals are Lebesgue integrals, the probability is speci-
fied as a distribution function, and the spaces are restricted to those kinds for -
which Lebesgue integrals exist. However, those readers who are interested in
simplicity of notation and are willing to rely on their intuition without seek-
"ing for counter examples that prove the equations are nonsensical may use the
simple notation of Riemann integration without specifying the type of inte-
gration involved. It is understood, of course, that when the signal space con-
tains discrete points as in some of the examples listed above, the integration
yields sums and probability densities that must be interpreted as delta func-
tions or simply as probabilities attached to each point. This gentlemen's
agreement about notation is not uncommon in books on mathematical physics.
For example, when the eigenvalues for a scattering problem assume both dis-
crete and a continuum of values, Schiff (1949) uses a special symbol, a heavy
block S, for this purpose to remind the reader that one sums over discrete
values and integrates over the continuum. Dirac (1930) has popularized the

use of delta functions in the integrand to yield discrete sums.

The situation that is most easily visualized arises when the receiver
operates on N equally spaced samples. In this case the signal, the noise, and
the message which is some combination of the signal and noise, may each be
represented as a point in an N-dimensional space and designated by a vector.
It is assumed that a frequency function is known for each of these variables.
Let us follow Middleton and write

tL
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"a signal
a() = frequency function of S
1, = the noise sample

(A-) = frequency function of the noise

"= message.
It will be assumed that the noise 9 is statistically independent of the signal•
and that the received message Vis the linear sum of the noise and the signal.
Thus the message vector may be expressed as

Sg = (8.1)+I
The message space, or observation space, will be denoted r.

It will be convenient to express the frequency function Ftf) as a con-
ditional probability depending on 9. Thus one will write F(P 13) for the fre-
quency function of the message.'

"Finally, one needs to introduce a decision space A which comprises the
possible decisions 7, Usually the structure of the decision space will be much
simpler than that of the other spaces. In the case of signal detection the space
A may consist of only two discrete points, while if one tries to recover as nearly
as possible the original wave form of the signal, the space A may have the same
dimensionality as the signal space ý2. The goal of the design is the determina-
tion of a decision rule 8( I i) which determines 7when V is given. The
"decision rule need not be deterministic but may have random decision built
into it For example, if two decisions appear equally likely, it may be an ad-
vantage in some situations to have a randomness built into the decision.

These ideas may be expressed graphically as in Fig. 8.1. In considering
this figure several points should be born in mind. First, the diagrammatic
representation of the various spaces as circles does not imply anything about
their structure or dimensionality. Secondly, the decision rule 6(.) will be
constructed using a knowledge of o(k) and W(NiA), but the rule itself does not
require any knowledge of the specific values of 'ý nor of AV that lead to the
observation V. Finally, it is helpful to visualize the decision rule 6 as a map-
ping of the observation space r onto the decision space A. In general this is
not a reversible 1-1 mapping since regions of P may map into points o0 A.
In fact, it will turn out repeatedly that the problem of finding 6(-) can be
expressed as a problem of drawing boundaries in F. A recent book by Sebestyen
(1962) has many illustrations of this process in which the boundaries are non-
linear and not necessarily connected.

Since one must face up to the possibility or erroneous decisions, it is
necessary to assign a loss function to each combination of possible signal 9 and
decision y. This function., which may be dependent on the decision rule, will

LiTe reader is referred to the footnote in Sec. 5.1 for this notdtio,,.

I1
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be denoted L(0, 7) and designated simply the loss function. The performance
of the svstem can be evaluated, for example, by averaging the loss function
over the -ange of possible messages • and decisions 7 and perhaps over the
range of si|•ials t. Thus, Middleton is led to a series of definitions, among

- ,which are the following:
If one thinks of 6(6 I i) as a probability density over the space A of y,

then2

f 8(y I V ) d( ) (8.2)

is the expected value of the loss function L for a given signal ý and a given
message r, If the space A is a set of discrete points, and this will often be the
case, the integral is interpreted as a sum over these points and 6(;• I PW7)d• re-
duces to a unique probability 8, at each point with

Esi = 1 (8.3)

where the sum extends over the set of discrete points. The message 17 will take
a wide variety of forms and the expected value of the loss must be averaged
over all possible messages. Hence, one must modify Eq. (8.2) by averaging
over the range of possible messages, i.e., the observation space r. The result of
this second average will be called the conditional loss rating and denoted), 8).

In the interest of simplicity the loss function L will be restricted sub-
stantially and new names will be introduced to reflect this simplification. As
Middleton points out, one may introduce loss functions which depend on the
decision function S. The theory associated with such loss functions is sub-
stantially more elaborate than the theory found when one assumes that L
depends only on the signalV and the decision 7 but is independent of 8. When
the loss function i6 subjected to this latter restriction, it will be called a cost
function and the associated averages will be called risks. In accordance
with this convention one defines the conditional risk r(ý, 8) by

,5) =f,/(V i )dP'f %Qt I')6(- I P)d . (8.4)

The function r(-) is called a conditional risk because it is evaluated for a
specific signall. The argument 8 in the functional notation r(g, 8) is a reminder
that the risk depends on the specific decision rule that is used in making the
decision, although the cost function C() does not depend on S.

2In this and the following integrals dy d+dignates a volume clement in the A space and,
consequently, is a scalar quantity. This notation is common in statistical mechanic%.

* [,
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The next step in the generalization of the definition of risk depends on
the experimenter's knowledge of the statistics of the signal 9. It was asserted
above that the probability density o(a) is known but this may not be the
case. If one can describe the kinds of signals 9 that may be received but can-
not assess a probability density, one cannot calculate an expected value of
r(l, 8) averaged over all possible signals. In this case one must have recourse
to the minimax concept introduced by von Neuman into the theory of games.
On the other hand, if one can determine the statistics of the signal 1, one can
calculate the expectation of r() for all possible signals. This leads to an aver-
age, unconditional loss rating R(o, 8) defined by

R(u, 6) = f o,(a),6)d 0

.: - fu•)s~. (8.5)
a "I

This expression is complete in one sense, but there is still a great deal of free-
dom left in the choice of the cost function C(.) so that a wide range of criteria
is available to the designer.

Equation (8.4) may be expressed in an alternate form that makes it
easier to visualize the concept of conditional risk. Let p(7 Iý)be the proba-
bility density that a decision Y will be made when a signal S is present and the
decision is based on the message 9 in accordance with the rule 6(5 I V. Thus,
by definition,

"• P(Y 1 -) =f by I iY) tX 9•)d]0 (8.6) i

By using this definition one may rewrite Eq. (8.4) as

= f- C0, ;)G I d3• (8.7)

One sees from this form that the conditional risk is the average value of the
cost of the decision weighted according to the probability of this decision.
The average is carried out over all possible decisions.

, These general formulas will be given a more explicit formulation in Secs.
8.3 and 8.4. First, however, it is desirable to continue the theoretical discus-
sion with a few more definitions.

8.2 Bayes Systems

"Suppose for the present that the signal statistics o(s), the message statis-
tics F(VP I ý), and the cost function C(y, 3') are known. Let us fix our attention
on the decision function 6('• I P which is at our disposal. For every decision
function 6(') one has an average risk

r t
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R(oS)r f j)d- . (8.8)
S r

One can order the decision functions 6(.) according to the magnitude of the

associated average risk R('). This would appear to be a valid way to evaluate
the decision functions since it seems satisfactory intuitively to assert that one
decision function is better than another one if the average risk resulting from
the first decision function is smaller.

Wald(1950) proves that there exists a decision function 6* which yields
the least average risk for any given set of signal and noise statistics and given
cost function. This decision function, 5*, will be called a Bayes decision rule,
the system that utilizes this decision rule will be called a Bayes system, and
the resulting value of the average risk will be called the Bayes risk. The pre-
ceding argument leads to a unique Bayes decision rule for given functions a,
F, and C One can broaden the enquiry by considering a class of probability
densities o(u) and finding the Bayes decision rule 8* associated with each func-
tion a. This leads to a Bayes class of decision functions.

In the preceding discussion it was assumed that o(S) is known so that
risks could be averaged over all possible signals. This assumption leads to a
unique value of the average risk and to the possibility of ordering decision
rules according to the magnitude of the average risk. If the probability density
o(g) is not known, one can still introduce a partial ordering of the decision
rules. One can use Eq. (8.4) or the equivalent Eq. (8.7) to calculate the con-
ditional risk for each possible signal ' and decision rule 8(.). It is conceivable
that of two decision rules 6 i and 62, 5i may yield a smaller conditional loss
rating for a signal 91 but a larger conditional loss rating for another signal 9.
In this case one cannot order the two decision rules according to their condi-
tional loss rating. On the other hand, one may be able to show that the con-
ditional loss rating yielded by a particular decision rule 63 never exceeds that
of another decision rule 64 for any possible signal and 6 3 < 64 for some signal.
In this case one says that the decision rule 63 is uniformly better than 4.4
This definition leads to a partial ordering of decision rules that is transitive.
That Is, if 63 is uniformly better than 64 and 64 is uniformly better than 65,

5 3 is uniformly better than 65.

It is well to stop the development at this point. It should be apparent
that there are many interesting mathematical developments that lie ahead, but
it would lead us too far from our present goal to follow any of them. The

reader is referred to Middleton (1960) and to Wald (1950). The important
aspect for our purpose is the generality of the concept of the Bayes decision
rule that is provided through the functions o, L, and C. Further, since the
iverage risks can be ordered and the conditional risks partly ordered, one has
the possibility of comparing decision rules with each other and with the Bayes
decision rule.

i' i- '
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The reader will have noted that the selection of a cost function is of
critical importance. It may be difficult to select a satisfactory cost function
but this is a problem of practical importance which should be faced by the
practitioner. Likewise, the practical question of the statistical probability den-
sities must be answered. As an example, it may be easy to assign statistical
parameters to the signal if it is present, but how can one assess the probability
that a signal is present" In a routine search with no previous alert, the proba-
biity that a signal is present is so small that one would normally approximate
it by zero. This would certainly be unsatisfactory. This can be avoided either
by considering conditional risks only or by assigning an excessively high cost
to the decision of no signal when one is actually present. On the other hand,
if the sonar operator has momentarily lost contact with a target, the probabil-
ity of a signal being present is much higher than it would be in the case of a
routine search.

The present account has been greatly simplified. Not only have the de-
J tails of the proofs been omitted, but the possible subjects for consideration

have been restricted. There exist classes of cost functions that are more
general than those considered here. Further, as mentioned above, one can
apply the theory of games both to the question of minimizing risk and to the
terminology of the discussion. Finally, one can add restraints on the decision
function 6(.) to which the minimization procedures are subjected.

8.3 A Specific Example

The nature of the theory outlined in the first two sections can be more
readily understood if explicit forms for the various functions are introduced.
Let us consider the case of signal detection in which two possibilities occur:

either a signal is not present or some member of the class of possible signals is
present. Let

q = a priori probaility that no signal is presentI
p = 1 -q = aprioriprobability that some signalers present.

Now the signal 9 is assumed not to be unique so there is a range of signals
which may be denoted by a set £21 in the signal space £2. Let o,(•X~e£2i) be

the probability density defined in 92, so that

,(•) =0,9e'2, ; f a(•)d9= I . (8.9)

Here c' means "is not an element of." Then one may write

o(k) = qb(•)+po,(u ) (8.10)

4 I. . 4-.
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where it is assumed that ou(0) = 0. The function 8(0) is the delta function
defined in the R2 space. Equation (8.10) predicts a(O) = q as it should.

The possible decisions that may be reached by the system are

-to no signal is present

and

,y I a signal is present.

Consequently, the average risk R(.) defined in Eq (8.5) may be expressed as

R(o,8)=f o(-dl)fF(1 1 -K){C(-•,yo)6(yo I P) +

"c(.,yl) 6(y, I 1)}di . (8.11)

One may think of the decision function 8(.) as a probability density. Since a
decision is always made in the present system, one must have

6(y, I i)+6(-f I = Il for alli•i (8.12)

There are four combinations of signals and decisions since for each de-
cision a signal may or may not be present. Consequently, the cost function
C(-) in Eq. (8.11) consists of four numbers and the integral over signal space
f2 reduces to an integral over 12, plus a term corresponding to' = 0.

The four cost values will be designated as follows:

C( 0;•= -o)=C1 0692, -to ;) 0•)C•

S(8.13)
CO 0 ; -fI) = C. Q,96921,, I, ) = c,. -.

Thus Cl-. is the cost of making the correct decision that no signal is present
while Ca is the cost of deciding that a signal is present when in fact there is
none. Since the circumstances, i.e., the presence of a signal, are the same, one
requires C1 a < Ca. That is to say, in any system of costing one would require
a wrong decision to cost more than a correct decision, other circumstances
remaining unchanged.. Likewise, C1 -p is the cost of making the correct decision

3 This is an inexact method of desribing a.(l It is really the integral of 4(') over a small
region contammng•= 0 that equals q.

t I.-------- II -------- ~ - - _
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when a signal is present while Cp is the cost of deciding that no signal is present
when in fact a signal is present. It is necessary that Cl-p < CP.

When Eq. (8. 10) is introduced in Eq. (8.11) and the array of cost terms
,a" in (8.13) are utilized, one has, with a change in the order of integration,

R(0,) =f Fi 10) 8(Cl. (o, I I)+ C, 60-1-) V

{Cp 5(y), I V•) ý Ci -p (-f, 1) dl• (8.14)

The integral over U2, which gives the average value of F(r IV), may bc desig- I
ýiated by

(F(V Iý) )S f a. (ý)F( 1 -9) dl~.(.5

"The concept of two kinds of errors was introduced in Sec.7. 10. A Type
I error, or error of the first kind, occurs when one decides that a signal is
present when, in fact, there is only noise. A Type ! error or error of the sec-
ond kind occurs when one decides that there is noise only when in fact a signal
is present. The probabilities of the two errors for a given decision function
are

Type I error: a = fF(17 10) 6(,y, i f) dV' (8.16)

Type 11 error 3 =, f (F(V K•) I s 6(y'0 I r) dI , (8.17)
I"

The following two integrals are recorded for reference.

f F(VIO) d0 = 1 (8.18)
1"

and

f (F(P' IV)sd S = f f o,()F(i I-dVaL 1. (8.19)I' I' •

I.
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These equations simply state that one is certain to observe some value of P.
By virtue of Eq. (8.12), one may derive the following equations from

(8.16) and (8.17) with the aid of Eqs. (8.18) and (8.19).

1- a = f F(P17 0) 6(-, 11) JdP (8.20)

With the aid of these simplified notations, Eq. (8.14) may be written

R = Ro + qa(Ca - ('I.-a) + PA(CO - C 1 -) (8.22)

where

Ro = qCI-_ + pC1 ., (8.23)

The quantity Ro is, so to speak, an irreducible minimum of cost. It is the
probability that no signal is present times the cost when a correct decision is
made plus the probability that a signal is present times the cost when the cor-
rect decision is made. rhe terms in parentheses in Eq. (8.22) are positive so
R _> R, always.

The introduction of the parameters a and 0 has lead to the pleasingly
simple form, Eq (8.22), for the average risk R, but it has distracted us some-

what from the primary goal of the analysis. One recalls that the real problem
is to find the decision function that minimizes the average risk, Equation
(8.22) really includes two decision functions which are related by Eq. (8.12).
Consequently, one must return to Eq. (8.14) and eliminate ope of the deci-

sion functions, say 6(y1 I r). This gives

R(o,b) = qCa + pC 1 .

+ f 6('Yo [p(Co - C I.g) F(•YI•>

-q(C( - C! .) /(P 10) 1 dP . (8.24)

In the derivation of this result it was necessary to use Eqs. (8.18) and (8.19).
The reader will have noticed in Eq. (8.24) that the constant term may

be written

qCa + PC1 " = R, + q(C, - Ct .a) > Ro,

..........
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where R, is the irreducible minimum of cost defined in Eq. (8.23). This in-
equality is not surprising, however, since the integral may be negative.

It will be noted that the first two terms in the right member of Eq.
(8.24) do not depend on the decision function. The discussion following Eq.
(8.13) showed that one always has Ca > C -, and Co > C1- _p The other quan-
tities which occur in the integrand of Eq. (8.24) are positive because they are
probability densities. Hence

}• 6(jo ] p(Cp - Cl-p) (F(P' 1ýý) ) S •> 0

S5(-to I P)q(C. - C1 .a) ,F(11 10) >, 0

The decision function which minimizes R(o, 6) can be determined by inspec-
tion. If

p't(Co - Cl.g) ( F(P• 11) )S > q(Ca, - Cl-a) F(R 0) (8.25a)4

one can minimize R by choosing

and, hence, ) (8.26a) V

On the other hand, if

p(Cp - Ci-_) F(F I) )S < q(Ca - Ci1a) F[Y I0) , (0.25b)

one can minimize R by choosing

and (8.26b)

The decision rule described by Eqs. (8.25) and (8.26) is a Bayes decision rule.

Further, it is a deterministic rule that contains no random choices.
The inequalities given by Eq. (8.25) divide the observation space r into

two regions r, and F2 ., The boundary separating these two regions is a sur-
face whose equation rnay be written

S•] I ,'.
I:. . . . . .. .
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p(F(PI 1))s -C•-Ci. (>0) . (8.27)
q F(V 10) CA- C 1.-0

The equation has been writtef, in this form so that the costs are isolated on
the right and the probability densiites and the observations Pare isolated on
the left. The nature of the surface defiiv., by Eq. (8.27) will depend on the

statistics of the signal and the noise and must be derived in special cases.

If the reader recalls Sec. 5.1, he will recognize the close resemblance be-
tween the quantity on the left and the likelihood ratio defined in Eq. (7.36).
The only difference is the presence of the extra factors p and q which are the
a priori probabilities of the presence and absence of a signal and the average
over the signal space fl. Because of this close resemblance, Middleton defines
the generalized likelihood ratio, A, by

" A=P r v' s))s (8.28)
qF(V 10)

If, now, one defines a symbol K by

CK -L- (>0), (8.29)

I one may summarize the decision rules, Eq. (8.25) and (8.26) as follows:

Decide,'y when A>K I
Decide yo when A< K (8.30)

The constant K, which is often called the threshold, is a positive constant that
depends only on the costs C,. Thi, likelihood ratio depends on the a priori

probability densities and on the length of the sample of data. The likelihood
ratio A and the threshold K can each be replaced by any monotonic function
of them. Middleton frequently uses the logarithm for this purpose: the rea-
sons for and advantages of this choice are given in Middleton (1966).

Equation (,3.28) forms an excellent starting point for the discussion of
signal processing since many of the problems treated in the literature can be
obtained as special cases of Eq. (8.28). For example, if one sets p = q = 1/2
and assumes that there is only one possible signal which ma! or may not be
present, Eq. (8.28) reduces to the likelihood ratio defined in Sec. 5.1 and dis-
cussed in Sec. 7.7. The likelihood ratio, or generalizations of it such as Eq.
(8.28), has been used as a starting point by many authors of whom one may
mention Rudnick (1961), Bryn (1962), and Birdsall (1965).

- - --. ---- -
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8.4 The Case of a Signal with Unknown Parameters
in Additive Gaussian Noise

The development of Eq. (8.28) enables us to continue the example that
was considered in Sec. 7.11. The likelihood ratio, R(P), given in Eq. (7.63) is
the ratio ( F(I I') )sIF(P I 0) of Eq. (8.28) when there is a unique signal•
present. In the present analysis, however, it will be assumed that the signal ý =
kS1 , S 2 ,. ... , SM) is a stochastic variable governed by a probability density
oi(g) defined in Eqs. (8.9) and (8.10). When the natural logarithm of Eq.
(8.28) is introduced, the signal detection is governed by the following equation:

M M
Qn A = Qn(p/q) + Qn exp a n Vm Sn amnSm Sn

I~m,n= I m,n= I

, (8.31)

Since the case of small nignals is of greatest interest, it is not unreasonable to
expand the expression on the right in a power series in the signal components
and retain only the linear and quadratic terms. It should be remembered that
the matrix elementsamn are inversely proportional to the square of the mean
noise level so that the expansion is actually a power series in the signal-to-
noise ratio.

When the expansion is carried out, one obtains

SQn A = n(p/q) + ( Z am, Vm Sn )s - 1/2 Q; a,, Sm S, )s

+ ½( Z mnVm Sn ) 2 )S -2 (Y amn Vrn Sn )2

(8.32)

where each summation is over m,n = 1, 2, ... M, The behavior of the first
term, which is the only term that is linear in the components oft, is of critical
importance. If the phase of the signal is known so that (Sn )s does not vanish,
the first term of the expansion dominates the series when the signal-to-noise
ratio is small. Middleton refers to this case as "coherent threshold detection."
The nature of this assumption can be illustrated by a comparison of active
sonar for targets of unknown range with communication over stable transmis-
mion paths. If echoes from a target of unknown range are detected, the phase
of the retxning signal will be distributed uniformly over 3600 and (Sm )s will
vanish since the phase will be one of the statistical parameters included in



SEC 8.4 OBJECTIVE CRITERIA FOR SIGNAL DETECTION 157

oi(1). On the other hand, in communication over a stable transmission path
the phase of the signal may be controlled with sufficient precision that the

assumption ( Sm )s : 0 is valid.

The problem of distinguishing between coherent and incoherent decisions

is not always easy since there are intermediate cases. For example, in the case
of a modulated carrier one may not know the range accurately enough to

specify the phase of the carrier, but one can specify the phase of the modula-
tion Thus one is able to apply coherent detection techniques to the envelope
although there is some loss in information when the carrier is removed. This
point has already been discussed in Sec, 7.5 in connection with the matched

(S/N) filter for narrow-band signals.

Middleton introduces the dichotomy of coherent and incoherent detec-
tion as described above. This is an unequal division, since the coherent case

arises infrequently in sonar applicatnons. Some workers in the field broaden

the meaning of coherent detection to include those cases in which the phase
S~characteristics nf the envelope but not of the carrier are known. These work-

ers then use "synchronous coherent" to indicate the more restricted case.

When the signal is incoherent ind ( S, )s = 0, Eq. (8 32) simplifies to

lQn A = kn (p/q) + ½ ((Zamn V, Sn,) )S - Y (2ato..n Sm Sn )s

""", .... (8.33)

Specialized forms of this equation can be obtained by introducing specific

probability density functions, io(ý), and obtaining explicit values for these

averages. A case of general interest that will be considered further in Chapter
10 arises when a signal which is a gaussian "white" noise is obscured by a

gaussian "white" noise background. In this case am,, = 5mn1I02 , where a is

the root-mean-square noise, and (SSm Sn )s = 6in ao2 , where a, is the root-

mean-square value of the signal. Equation (8.33) becomes, for this special

case,

Un A= Qn(p/q)+(Mao+/2o A{a, / ) Vin - I . (8.34)

rn=1

The structure of the receiver is especially simple in this case since it is only

necessary to sum the squares of the message samples, V,,,. If the received

message, r, is thought of as a point in an At-dimensional cartesian space, r,

Eq. (8.34) can be interpreted as follows. The solution of the threshold is
equivalent to the selection of a radius R of a hypersphere in r, and the hy-

pothesis lI/ is chosen whenever the sample point V falls outside this sphere.
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One can extend the discussion of the structure of the detector to include
third order moments of the signal amplitudes but this does not seem justified
in view of the complexity of the expressions and the lack of experimental data
on third order moments of the noise. The problems of signal detection are sig-
nificant only over a range of approximately 20 to 30 dB in the signal-to-
noise ratio. If tne signals are too weak, the problem is too difficult to solve,
while if the signal is too strong, there is no prbblem.

8.5 Discussion of Likelihood Ratio Receivers

The generalized likelihood ratio receiver described by Eq. (8.28) or by
the logarithm of both members of this equation provides a powerful tool for
the design and evaluation of receivers. It can be shown (Peterson, Birdsall, and
Fox, 1954, and Middleton, 1960, pp. 807-812) that many of the special detec-
tion criteria discussed in the literature are equivalent to the generalized likeli-

•- ' huod ratio receivers with special assignments of the set of cost values, Eq.
(8.13). Thus these systems are Bayes systems and are optimum in that they
yield the least average risk.

The evalu-ition of the performance of a receiver or, equivalently, the
construction of the receiver operating curves presents many analytical diffi-
culties. As pointed out in Sec. 7.10, one must be able to evaluate the probabil-
ity densities P(A I Hi), i = 0, 1, for the statistics of the signal and the noise.
"The ease with which this can be done depends on the assumptions introduced
for the statistical properties of the noise and the signal. It is frequently as-
sumed that the noise samplesNm(m = 1, 2,. ... M) are statistically independ-
ent and that each is governed by a gaussian probability density. The condi-
tions under which these assumptions hold are outlined in Secs. 4.4 and 4.5.
Relatively simple derivations of the probability densities P(A I Hi) for various
classes of signals and with less restrictive assumptions regarding the noise are
given in Chapter IV of Helstrom (1960).

8.6 Suggestions for Further Reading

There is a wealth of fascinating material available for the reader who is
interested in the ideas touched upon in this chapter. Undoubtedly, the best
introduction to the subject is the paper by Middleton and Van Meter (1955),
but if this is not available, the Harvard thesis of van Meter (1955) and Chap-
ters 18 and 19 of Middleton's book (1960) are nearly as good. Chapter III of
the book by Helstrom (1960) gives a clear but much briefer account of the
subject. The foundations of the subject can be explored in the book by Waldg

(1950).
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PROBLEMS

8.1 Show that

amn VmS =0
m,n=l

when Sm = a, cos(27rfomAt + X) and X is a random variable distributed over
the interval (0, 21) with constant probability density. ao, fo, and At are
constants.

8.2 Show that

am Vm =Sm,n=l S)

when the components of the vector are governed by a gaussian probability
density similar in form to Eq. (7.52).

8.3 Reduce Eq. (8.32) to a simpler form when the signal'is governed
by the same probability density as the noise vector A• with the difference that
each value of amn for the signal is p 2 times the value of amn for the noise.
Hint: Remember that the matrix of the second order moments, (SmnSn )is, in
"this case, proportional to the inverse of the matrix (amn).

8.4 Calculate a few ROC curves for the receiver described by Eq. (8.34). Use

E•Vm
t~m1l

as the output of the receiver and the radius, R, of a sphere in M-dimensional
space as the threshold.
Hint: The random variable Z Vm is governed by the chi-squared distribution.
A trick for integrating volumes in the M-dimensional is described by Jeffreys
(1961, pp. 103-104).

8.5 In Eq. (8.10) it is assumed that the null hypothesis y'o corresponded to
0. In target classification one may wish to discriminate between unwanted

signals 9 (ef 0 ) and wanted signals • (621) where E2o and 12, are subsets of
the signal space S2 which have no points in common (f20 X 2 = 0). In this
case Eq. (8. 10) can be generalized to

I? .. , -
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4 )=q ao(o)+p u(k)

where

f ao(S)dS= f o1(S)dS=I .
5o20

Show that under these assumptions Eq. (8.27) becomes

p(F( I=))S, - C.-CI=

q (F(V' 1:))So CO"Ca -g

where the definitions of the ensemble averages are patterned after Eq. (8.15).
j\

I
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The Measurement of the Ambient Noise of the Ocean

9.1 The Vertical, Linear Array

In Chapters VII and VIII the reader has seen how one may design a de-
tection system to detect a signal in the presence of a noise background. The
analysis was carried out for a single channel only but in practice it is often
desirable to use an array of detectors arranged in such a way that the signal,
which is common to all hydrophones, is superimposed coherently while the
noise detected by or generated in each channel tends to cancel., Closely con-
nected with this noise reduction is the concept of directional beams. This
subject is large and complex and will require several chapters for an adequate
discussion. The present chapter has the modest goal of treating the response

to noise of a linear array of nondirectional hydrophones. Thi limited program
is not only useful as an introduction to more elaborate arrays, but also it is
a hydrophone arrangement that has been used to measure the ambient noise
in the ocean.

If the hydrophone array is located in the ocean far from the shore in a
region of approximately constant depth, there is no reason to assume that the

noise arriving from one azimuthal direction is different from that arriving from
another direction. Since this assumption appears to be borne out by measure-
ment, it is used as a starting point in the following discussion. Needless to say,
this assumption of noise isotropy will not be valid when localized noise sources
such as heavy ship traffic or storms are present.,

"Suppose that M nondirectional hydrophones are suspended in a vertical,
linear array in the ocean. For the moment no assumption will be made about
the spacing of these hydrophones. Although there are many ways in which the
outputs of these h~drophones can be processed, a method frequently used
consists of introducing an adjustable time delay in the output of each hydro-
phone, forming a weighted average of each instantaneous output, squaring this
weighted average, and averaging over a finite time. This process is shown
schematically in Fig. 9.1 In order to discuss this system in more detail, intro-
duce the polar coordinate system of Fig. 9.2. It will be assumed that all noise

sources are so far away that in the vicinity of the array the wave fronts are
planes. This does not require that the ocean be homogeneous everywhere but
only in the vicinity of the array.

161

..

.L __ -- _- .--



162 SIGNAL PROCESSING OF UNDERWATER ACOUSTIC WAVES SEC 9.1

No I

J TIME AMPLIFIER

Figure 9.1-A linear array and one method of processing the output of the hydrophones.

ILet

yn(t, 0, O)dQ2 Yn(t, 2)dM = contribution to the output of the nth
hydrophone due to sources in the solid

angle M~T.

(9.1)

If one integratesyn(.) over the entire solid angle, one has the output of a single
hydrophone. The output of the array is I

M

hAt) = an f yn(t, 92) M• . (9.2)

n=l 4

If this output is squared and a time average is formed, one has I
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+ T/2

A A 2(t) dt

-T/2

M +T/2

= ama f f d&2d'Ifn T ymt(t,)yn(t,j2') dtZf 41 T j-
m,n=l T-/2

(9.3)

where the order of integration has been changed.

z
i Zi

IZ

Z2

DIRECTION TO SOURCE, (8,q)

ZM-f
"" ZM dn=ELEMENT OF SOLID ANGLE

y

x

Figure 9.2-A linear array of M hydrophones and associated geometry.

Sof M-an

}I
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It is evident from the discussion that Ym (t,S2) and yn(t,R) will be closely
related because of the assumption of plane wave fronts. On the other hand,

ym(t,•2) and yn(tS2') may be quite different. If the sources of the ambient
noise are highly localized and discrete, one would expect ym(t, R) and yn(t,&2')
to be independent random processes, (n, n = 1, 2, . . .M). This assumption is
bolstered by the fact that deductions based on it agree with experimental ob-
servation. Noise sources such as breaking waves, collapsing bubbles, and bio-
logical organisms appear to be the likely origin of most of the noise. These
sources are a form of the shot effect and since many events happen per second,
one would expect the noise to have a gaussian first order distribution. On tl'e
other hand noises due to ships will have different properties. First, the ship
is localized so that unless it is close to the array it will yield functions of the
form ym(t,&2) 6 (22-f2') where f2' = (0',0') indicates the direction to the ship.
Secondly, there are too few ships to give signals amenable to statistical averag-
ing over (0,0),

It will be assumed that sources located in different directions are inde-
pendent of one another, i.e., that

tT/2
limra

T-• j Ym(t, 2)yn(t, W) dt = Pmn(92) 8 (f-l'). (9.4)
- T/2

The reader will notice that this has the form of a cross-correlation function
using direction in space (0,0) rather than time as the parameter, Further, the
expression on the right is exactly analogous to Eq. (4.20) which is the auto-
correlation function for white noise. The function Pmn(&2) depends on the
array design as well as on the distribution of sound sources.

The delta function 6(Q2-,Q') plays the same role in integrals over a solid
angle that 6(t) does for integrals with respect to time. Hence, when Eq. (9.4)
is applicable, Eq. (9.3) becomes

A 2(t)= Z aman f Pmn(n) dMl. (9.5)
m.n = l I

In order to visualize more clearly the nature of the function pmn(E2)
consider the responses of two hydrophones located at zm and zn to aplane,
monochromatic wave airiving from the (0,0) direction. The received signals
are

ym(t,s2) =S(0,&) cos[rXr-tin) + kZm cos 0 + 3 , (9.6)

|I
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yn(tn2) = S(0,0) Cos[ w(t-in) + kzn cos 0 + (9.7)

where S(0,0) is a measure of the amplitude, rm is the time delay, 3 is a con-
. ,' stant phase angle, w is the angular frequency 21.t; and k = 27r/X. By Eq. (9.4)

Pmn(n) = S'(0O,) cos[wo(t-Tm,) + kzm COS 0 + 0] X

cos[w(t--r) + kz, cos 0 + 1]1 (9.8)

Applying the formula 2 cos A cos B = cos (A + B) + cos (A - B), one finds the
time average easy to perform. This yields

Pmn(n) = ½ S'(0,O) cos[c4(rn-7'm) + k(zm-Zn) COS 0]

(9.9)

* and

M

A 2 (t) T aman f coslw(Tn7-m) + k(zm-Zn)cos 0] x
2 4r

m,n= I

"' " •S2 (0 ,0) M ...... (9.10 )

This formula can be expressed in practical units as follows. Let F(0,0,) denote
the normalized pattern response when the beam is steered to the angle 00.
Thus

F(OOo) _ ,aman cos[X(rn-r,,) + k(zm-zn) cos 01
Zaman cos[c0 (j-,rm) + k(zm-Zn) cos 0o] (

The function S2 (0,o) is proportional to the noise power arriving from the direc-
tion (0,0). This quantity can be converted to practical units of(microbars) 2

per steradian and denoted N(0,t0). Finally, the constants generated by these
changes can be combined with the factor 1/2 and the sensitivity of the system
to write

IF 2n7

V2 (0,) = K 2 f F(0,00)N(0,0)sinOdOdO , (9.12)

0 0

o -J
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where V"'(O,) is the mean square output of the system in volts squared when
the conical beam is pointed in the direction 0o., K is the on beam sensitivity
in volts/microbar.

The derivation of Eq. (9.12) has been phrased explicitly in terms of the
linear array, but it can be derived readily without recourse to a specific model
for the receiver.. This alternate method of development is given since it can be
applied to a wide variety of situations.

Assume that a large number of independent point sources are distributed
over a large sphere of radius r centered about a receiver whose direction re-
sponse is A(0,0). A typical source located at (Oi,,t) produces a pressure of
magnitude p,/r at .he receiver. The total pressure received is

p= 1-, A(Oi,_i)pi (9.13)
rL

where the sum is over all the sources. The mean square pressure is

2(p) = 1I A(O,) A(O,'0) (pip,)

r I'

= 1_2 EA 2(20"0,) (pi), (9.14)

since the sources are independent. Assume that each source has the same value
( pi2 ) = (p0 2 ) but that the number of sources per unit area on the surface of
the sphere is)1(0,4).

Under these assumptions it is convenient to divide the surface of the
sphere into a network of small elements of solid angle Aft,. The sum over i is
grouped into partial sums of those points falling into Af2/. The functions
A(Oi,,i) and 1(01,0i) may be treated as constants for all points (Oi,oi) falling
in the solid angle element Ai2j. Under these assumptions Eq. (9. 14) becomes

(p2) TA 71'0¢) (0,,0i) rAI. (9.15)

In the limit as Aft/ 6 and the number of terms in the summation approaches
infinity

(p=2 (po 2 ) f A2(0,0)jf(0,) sin OdOdO. (9.16)
4nf

Equation (9.16) has the same functional form as Eq. (9.12), and the equations
can be made identical by suitable definitions.

iI
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Stone (1962) has studied the properties of Eq. (9.10) in order to answe
"questions about the resolution of noise distributions. He plots graphs that
show the ability of the array to map regions of (0,0) that contain concentra-
tions of noise power.

When the sources of noise have azimuthal symmetry, N(O,0) = N(O) and
the integral with respect to 0 that occurs in Eq. (9.12) can be evaluated readily
to give

V2(O°) = 21rK2 F(O,0o) N(O) sin OdO. (9.17)

Fox (1964) has applied Eq. (9.17) to measurements of ambient noise using an

"array of 40 elements. Various sets of weights I am I were used so that 28 beams
could be formed, and measurements were made at four frequencies extending
from 200 to 1,500 cps. The noise was filtered with a band-pass filter whose
band width was 10% of the center frequency. Thus the theory developed here
for monochromatic waves could be applied.

Since Eq. (9.17) is an integral equation in which N(O) is the unknown
function, one is tempted to approximate it by a finite set of linear equations
and invert them. This procedure is not feasible because F(0,00 ) is everywhere
positive and this imposes impossible requirements on the accuracy of the ex-
perimental values V2(O) when one inverts the matrix.. It may not be readily
"apparent from Eq. (9.11) that F(0,00 ) > 0, but Eq. (9.12) shows that F(0,0,)
must be nonnegative since V'(0o) must be positive for all nonnegative func-
tions N(O). Fox was able to obtain reliable values of N(0) by approximating
the integral equation (9.17) with a set of 28 linear equations and solving these
by a method of successive approximations.

Fox plots a series of polar plots of N(O) versus 0 for three sea states
(SS 1, 3, 5) and four frequencies. His results can be oversimplified by saying
that at low frequencies (200 cps) N(O) increases with 0 and has its maximum
value at 0 = 900, while at the higher frequencies (1,500 cps) N(O) decreases
with increasing 0 and has its largest value at 0 = 0. This result can be made
plausible by considering the effects of refraction and attenuation. Because of
the upward refraction of acoustic rays in the water, an element of solid angle
at the array pointed in a near horizontal direction subtends an area on the
ocean's surface that is much larger than predicted by the normal inverse
square law. This phenomenon is least effective at angle 0 near zero. The in-
crease in area subtended for large 0 is counteracted to some extent by the
increased attenuation resulting from the longer paths. The observed behavior
is consistent with the fact that the attenuation is least at the lowest frequency.

The factors listed in the last paragraph can be corrected for by ray dia-
grams and attenuation measurements, but there is another effect that

---
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complicates the picture. The sources at the surface that radiate the ambient
noise field may themselves be directional. This directionality is rn unknown
which can be deduced from the measurements of V2 (0) by a careful analysis
of all the known effects including multiple bottom and s',-'ace bounces.
Talham (1964) has carried out such an analysis and applied it to Fox's data
(1964) for low sea state and low frequency., He obtained bes! agreement with
the observations when he assumed that the near surface sources were
nondirectional.

Axelrod et al. (1965) have reported a set of measurements similar to
those of Fox (1964) but more extensive, It would appear that the two sets of
measurements were made with the same hydrophone array and at the same
location in the ocean although this is not stated in the paper.

9.2 An Array of Only Two Hydrophones

In the experiment described in the last section the noise was filtered
with narrow-band filters and the directionality was achieved by using an array
300 feet in length. Alturnately one can use a smaller array and achieve direc-
tionality by computing the autocorrelation function of a wide-band noise. The
beam is steered as usual by introducing time delays.

Assume that one has two h) drophones, 1 and 2, as illustrated in Fig.
9.3 located at z = +a and z =-a, respetively. Suppose further that a plane wave
arrives from a direction (0,0) as illustrated, but that instead of a monochro-
matic wave as in Eqs. (9.6) and (9.7), the wave is a stochastic process x(t,, X).
Equations (9.6) and (9.7) can be modified for this case to be (am = a, = 1)

y I = S(0,0) x [t-T I +(a/c) (cos 0) + X3,1] (9.18)

Y2 = S(0,) x [t-T2-.(a/c)(cos 0) + 3,] . (9.19)

Instead of forming a sumn and squaring, multiply yi andy 2 together and form

a time average. The output becomes
+ T/2

7j r0,0)- X , [t-r, +a9 (COS 0) + •,X]

f C

Xlt-T2 -a(cos 0) + A,?] dt (9.20)
C

The question of approximating an infinite time average by a finite time average
has already been discussed in Sec. 6.1. If one assumes that T is made large
enough, no serious error will be made by approximating the finite time average
in Eq. (9.20) by the limit as T-- '. I his yields

-- ----
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INCIDENT PLANE WAVE

(o,o'+ a)

* 2V

Figure 9.3-An array of two hydrophones and associated geometry.

(O .- )=S 2
'(0O,)Cx[" 1 -" 2 -2cos]. (9.21)

It is evident from this equation and the earlier discussions of the autocorrela-
tion function of a wide-band noise that one can achieve a highly directional
response. The major lobe will be pointed in the direction

Obeam = Cos-I C(TI-T2) (9.22)2a I

In order to illustrate this example consider the response of a beam

pointed at right angles to the line, 7 = -2, to plane waves of constant ampli-

tude, S(0,0) I, but variable direction 0. Assume that the noise source is d
white noise of bandwidth W centered about fo. One sees from Eq. (4.21) that
the normalized output of the detector in this case is

sin(2irWa coso
(0) 2Wa s cos 0/ (9.23)

-cos 0C

It - i
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It is instructive to compare this with the response of an unshaded line
hydrophonc of length 2a to a monochromatic wave of frequency f&. It is easy
tc show that this normalized pattern is

sin 2T.a CosG 0
,ine(O) = (9.24)

2Cf~ CosO0

when the signal is detected with a square law detector.
The responses given by Eqs. (9.23) and (9.24) are plotted in Fig. 9.4 for

the special case W = f0 . The product array has the advantage that the first
minor lobe has a negative sign which enables one to reject it as pointed out by
Welsby and Tucker (1959). For example, if&(0) is used as the intensity modu-
lation on the oscilloscope, the negative, first minor lobe will not produce a
brightening. In this case the product array has a definitely better major lobe.
The large positive lobe at 4.7 on the abcissa scale can be removed by going to
a wider bandwidth or by replacing the point, omnidirectional receivers by di-
rectional receivers having a rejection at this angle.

The picceding analysis of the directional response was based on the hy-
pothesis of a single noise source located in a unique direction. Actually, the j
noise may arrive from all directions as in the examples discussed in Sec. 9.1.
If these noise sources in the various directions are assumed to be independent,
one can either integrate Eq. (9.21) over all angles (0,0) or multiply Eq. (9.12)
(withM = 2 and aI = a2) by a power spectrum W(f) and integrate with respect
to f. The mathematical analysis will not be carried out here, and the reader is

r - referred to the papers by Faran and Hills (1952 ab) and Dunham Laboratory
(1963) for details.

Faran and Hills (1952 a,b) have made extensive theoretical and experi-
mental determinations of the behavior of the product of the outputs of twoShydrophones located in a noise field. They produced this noise field with all

array of loudspeakers located on a semicircular arc and located the two receiv-
ing microphones near the center of this arc. The loudspeakers were driven with

- - a noise source ceittered at 4 kcps, and the entire system was located in an
"anechoic chamber to avoid trouble with unwanted reflections. This arrange-
ment %as a practical compromise for the more general arrangement in which
the loudspeakers would have been distributed over a spherical surface. A
theoretical discussion of the noise field produced by these two distributions
of sources and the response of the correlated outputs of the receivers may be
found in a report by Usher and Schultheiss (1963).

Linnette and Thompson (1964) have published an account of ocean
measuremeiAts in which they utilized an array of two omnidirectional hydro-
phones like 'hat just analyzed. Their two hydrophones were separated

>w
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vertically a distance of 13.2 feet and placed on a mud-sand bottom at a depth
of 360 feet. By introducing band-pass filters they restricted the noise spec-
trum to one octave ranges centered at 700 cps in one set of measurements and
at 1,000 cps in another set of measurements. They used time samples 15 sec-

onds in length and introduced a maximum time delay, T1 - T2 = 1,420 micro-
seconds, in the autocorrelation computation. This maximum delay corresponds

RESPONS, OF A LINE HYOROPHONE OF LENGTH 2.

TO A PURE TONE OF FRE('UENCY I.
-- -- -- RESPONSE OF TWO POINT NYDROPNONES TO NOISE OF

CENTER FREQUENCY I. AND BANDNIDTH W I.

_ .tI. - - - -- POSITIVE VALUES
- NEGATIVE VALUES

I.

UJ '
II

UL'
I */ ! I

0 0 10 :,.

___z_______,, I

ULI

CIE

2 3 4 5 6
(2 'r f. /c) cosO

Figure 9.4-Comparison of the response of a line hydrophone to a monochromatic wave
to that of two point hydrophoneF to noise.
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to looking vertically upwards. Their article contains plots of autocovariance
function versus time shift.

In order to have a theoretical model with which to compare the meas-
urements, Linnette and Thompson assumed that the ambient noise was pro-
duced at the surface of the sea by independent noise sources distributed uni-
formly over the surface. It was assumed that the radiation was not isotropic
but that it depended on the angle 0 between the downward vertical at the
source and the direction of the receiver. In particviar it was assumed that the
radiation pattern for the power depended on cosn0 and n was chosen to give
the best fit with the observational data. The results indicated that n = 3 for
wind speeds of 15 knots and decreased to near unity at wind speeds of 3-5
knots. This conclusion differs from that reached by Talham (1964), but one
cannot be sure whether it is due to a difference in the sources or in the method
of analysis. Linnette and Thompson did not make any allowance for energy
reflected from the bottom.

Similar studies have been reported by Arase and Arase (1965).

9.3 An Example of Experimental Data

Figure 9.5 is a reproduction of the output of a system that utilizes a cor-
relation receiver. Sixty-four separate channels are processed so that sixty-four
beams can be viewed simultaneously. Each of these beams is portrayed on
1/64 of the paper width. A horizontal line across the paper at any instant of
time gives the autocorrelation function of the source versus beam angle Obeam,
Eq. (9.22), as described by Eq. (9.21) for a fixed value of 0, the direction to
the source. The target provides a central band of positive correlation bordered
by bands of negative correlation as predicted by the dashed curves in Fig. 9.4.
As time passes the target moves to the left.

The practical details of the circuit that provided the data portrayed in
Fig. 9.5 man be understood better after the reader has read Sections 10.6 and
10.7., The outputs of the hydrophones were clipped and the polarity was
sampled at a frequency approximately three tunes the highest frequency in the
hydrophore outputs. The output of the correlator was filtered with an RC-
filter whose time constant was approximately 100 seconds. 'The output signal
of each channel was presented in a symmetrical, width-modulated trace.

The experimental data shown in Fig. 9.5 and the description of the
equipment were furnished by Messrs. I. Engelsen and F. Bryn of the Norwegian
Defence Research Establishment, Horten, Norway,

I
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'V,

BEAR ING -

Figure 9.5-Thc output of a correlator with 64 channels. Dark areas have positive corre-
lation, crosshatched areas have negative correlation.
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PROBLEMS

9.1 Evaluat.Eq.(9.10)forthespecialcaseM= 2 ,al a2 = 1,k(z1 -z2)6,
S(00) = 1,0 < 0 < 7r/2, andS(O,) =- 0, 7r/2 < 0 < 7r. Plot A versus the di-
mensionless parameter Ac(TI - r 2).

9.2 A noise source whose power density is constant over the frequency band
-5.0 to +5.0 kHz and zero for all other freqUencies is located in the direction
0 = 900, € = 0. (See the coordinate system in Fig. 9.3).

(1) Plot a normalized response &(0,0) given by Eq. (9.21) versusrl -72.

Extend the graph through the first "minor" lobes of 6(0,0).
(2) Estimate the angular resolution for point sources on the assump-

tion that dips of 3 dB in a response curve can be detected reliably.

9.3 Generalize Eq. (9.21) to the case of two similar but statistically inde-
pendent noise sources located at 0 = 90*, = 0 and 0 = 900 - a, ¢ =0. Assume
that the time averaging is infinite. 2a/c = 0.1 sec, and C(r) = -T T/T
1i7 1 < T, C(r)=O, 1 T I > T.

(1) Plot the response versus T, - rT for various values of a for T =

0.01 sec.
(2) Determine the minimum value of a for which the source can be

resolved on the basis of the assumption that a dip of 3 dB in the response curve
can be detected reliably.

t/ . ... . ..



CHAPTER X

Three Dimensional Arrays of Nondirectional Hydrophones

10.1 Introduction

In the last chapter the question )f a linear array of M hydrophones was
considered briefly, but only as a means of measuring directional properties of
noise. The important question of the detection of a signal in a noise back-

ground was not considered. Certain aspects of this problem will be considered
in the present chapter.

Suppose that a three-dimensional array of M hydrophones is available
and that a variable time delay ri (i = 1, 2,.., M) can be inserted in the out-
put of the ith hydrophone. These time delays will be chosen so that if a plane
wave arrives from a given direction the outputs of the M delay lines will be in
phase no matter what the wave shape is. The actual details of the directionality
of the response will not be considered but each choice of the set of delays

i T will yield a three dimensional beam pattern, and the beg n can be steered
in different directions by choosing different sets of delays i . This can be
done sequentially by switching or simultaneously by using multiple delay
lines.

The outputs of the M delay lines will be processed in some manner to
provide new outputs on which signal detection and extraction are based. In
each analysis it is neces.ary to select a specific method of processing the data
and to make assumptions about the nature of the noise and the signal., The
variability of the analysis is further increased by the fact that one needs to
choose some definition of the signal-to-noise ratio in the output in order to
define a processing gain. As one reads the published papers one is struck
forcibly by the fact that the various assumptions listed above are conditioned
by the requirements of the analysis as strongly as by the physical realities of
the problem. Even so, the theoretical analyses are useful because they give one
an insight into the problem and show which parameters are most important.
However, one cannot hope to optimize the sonar system as long as the class of
problems considered is limited by the requirement that the process be amen-
able to analysis. This is clearly a situation in which one should piogram the
problem on a computer and use real data as the input. In this way one could
model a wide. riety of detection systems and use realistic criteria in assessing

the gain of the system.

175
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Figure 10.1 illustrates a few of the system configurations that have been
subjected to analysis. The time delays 7'i have been omitted in each case in
order to simplify the drawings. The system of Fig. 10.1(a) is the same as that
of Fig. 9.1 except for the distribution of the hydrophones in three dimen-
sions.' The system of Fig. 10.1(b) is the same as that of Fig. 10.1(a) except
that the outputs of the delays have been quantized before they are summed.
This quantization may be simply a perfect limiter or it may have seve al levels
of quantization. When the quantization is limited to two levels, ±-1, the system
is known by the acronym DIMUS (DIgital MUltiple beam Steering). This sys-
tem has been studied rather extensively both experimentally and theoretically
at Navy Electronics Laboratory, San Diego. Professor Bonnet and his associ-
ates at Centre d'Etude AlMatoires de Grenoble (CEPHAG) have made exten-
sive studies of the improvement that results when more levels of quantization
are introduced.

The system of Fig. 10.1(c) is the natural extension of the two-hydro-
phone array of Fig. 9.3. Quantizers are included in Fig. 10.1(c) although the
system will be analyzed with and without quantization.. The system of Fig.
10. 1 (c) can be made to resemble strongly the systems of Fig. 10.1 (a) and (b)
by setting M, = M2 = M and x,(l)(t) xi(2)(t). With these substitutions
circuit (c) becomes identical with (a) when the quantizers are removed, and it
differs from circuit (b) okdy in the location of the quantizers.

The multiplicative array has been studied extensively by Professor Tucker
and Dr. Welsby at The University of Birmingham, England. Their work will be
discussed separately in Chapter XIII since they utilize a planar array of detec-
tors each of which has a directional pattern.

Figure 10. 1 (d) is an extension toM hydrophones of the system discussed
in Chapter VII. This generalization introduces new and interebting features,
but the system cannot be compared easily with the others discusaed in this
chapter. It was seen in Sec. 8.4 that this approach to signal detection is a
special case of a Bayes system. The analysis of Fig. 10.1(d) and (e) will be
given in Chapter XII. The circuit in Fig. 10.1(e) represents an embodiment of
a likelihood ratio receiver.

In view of the complexity of the systems and the large number of hy-
pothees that can be made about the signal and noise statistics, each system
will be analyzed first without a quantizer. The analyses will then be modified
to incorporate the quantizers. Whenever it is relevant a subsciipt Q will be
used to denote a quantity resulting from quantization and a subscriptA will
denote that the quantizer is absent.

1One oiler difference is that the weighting factors have been omitted in order to simplify
the equations The reader should repeat the analyses of this chapter with a weighting
fa-tor a% an exero.
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10.2 Historical Note on the DIMUS System

The DIMUS system has an interesting background. In a sense it can be
said that this system is a descendent of the work done at the Harvard Under-
water Sound Laboratory (HUSL) during World War 11. Professor F. V. Hunt,
of Harvard University, who was the Director of HUSL, suggested (Hunt, 1951)
that correlation techniques should be used in the detection of acoustic signals.
These ideas were implemented by Faran and Hills (1952a, b) and by Ander-
son (1956) in important studies at Harvard University. Dr. Anderson's work
was concerned with a method of computing autocorrelation functions rapidly,
and it led to the development of a system known by the acronym DELTIC
(DElay-Line-Time-Compressor). The continuation of his studies on this and
related systems at the Marine Physical Laboratory at San Diego resulted in the
development by Dr. Anderson of the DIMUS system. Numerous important
papers on the theory of the DELTIC and DIMUS systems have been published
by members of the group at Navy Electronics Laboratory, San Diego, Califor-
ni,, working under Dr. E. CWesterfield.

10.3 Analysis of the "Standard Delector"

The present analysis of the circuit in Fig. 10.1(a) follows closely a paper
by Usher(1964) with some references to the earlier paper by Rudnick (1960).
Consider a system of M omnidirectional hydrophones placed in an array which
may be three-dimensional. Beam-forming is achieved by inserting a delay line
in the output of each hydrophone and by selecting this time delay so that
when a plane wave arrives from the desired direction in space, the M outputs
of the delay lines will be in phase. By combining the delay in the water path
with the delay in the delay lines one does not have to specify the arrangement

of the hydrophones These statements are illustrated in Fig. 10.2. This assump-
tion is especially convenient from a theoretical viewpoint when it is assumeti
that the noise signals received at each hydrophone are independent stationary
time series Under these assumptions the time delays in the noise signals can
be ignored.

The outputs of the delay lines of Fig. 10.2 may be denoted 2 s,(t) +

n•(t)(t = 1,, 2, . . At) and these are the inputs of the processing system shown
in Fig 10.1(a). When the network delays are chosen for targets in a particular
direction,. the M output signals will be in phase only for sources in that direc-
tion If the source is located in a different direction, the delays associated
with the water paths change and so the T,'s change Hence, the outputs asso-
ciated with the signals may be written

21 he parameter X whlch has been used in the past to denote the ensemble variable will

bc omitted in this chapter to simplify the form of the equations. The reader should re-
member that the ensemble averages are over this parameter

* ~ . 1
- -- - - ,- • - -
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SUMMER SQUARER LOW-PASS
FILTER

(a) THE "STANDARD DETECTOR"

-7t) -• • x t -

QUANTIZERS SUMMER SQUARER LOW-PASS
FILTER

(b) CIRCUIT (a) MODIFIED BY QUANTIZING THE OUTPUTS OF THE HYDROPHONES
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(c) A ML"TIPLICATIVE ARRAY'

(Figure 10. -Continued on next page.)
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INCIDENT PLANE-WAVE FRONT/I
f~•oF'#/N !. ... 1 DE:LA:Y:L:N:E:ý _xJlt

N DELAY LINE X2lt)

"No DELAY LINE XM(t)

TM

Figure 10.2-A plane-wave incident on an array of M hydrophones for a wave form a
unique direction. (The time delay, Ti, includes water-path and the delay line.)

s,(0) = At-to-) , (10o.1)

where s(.) is a signal shape associated with the wave front and hence common
to all of the hydrophones. Therefore, the outputs of the M deldy lines may
be written as

s(t-to-T) + ni(t), i= 1, 2. M. (10.2)

Here to is an arbitrary constant determined by the choice of the time origin.
In the analysis it will be assumed that the average values of s(t) and n1(t) are
zero. The output of the summer is

XA(t) i+ n) , (10.3)

where, as mentioned above, the subscript A means that the quantizer is absent.
The output of the squarer is

* ..
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M

YA()= [xA(t)i ' {si(t) t .+ (10.4)
i.1= 1

It was seen in Sec. 6.2 that the output of a low-pass filter will fluctuate about
a mean value which is the ensemble average of YA (t). The ensemble average
and the fluctuations thereabout can be computed only if one is prepared to

introduce specific statistics for the signal s(t) and the noise.
It is assumed that
(1) the functions s(t) and n,(t) (i = 1, 2 .. l.. M) are stationary. ergodic

gaussian processes with zero time averages.
(2) njt) and n,(t) are independent of one another, i *j.
(3) s(t) and n,(t) are independent of one another.
(4) the autocorrelation function of n,(t) is NR(r). R(r) is normalized

so that N, is the total power in the ith noise. It will be assumed that the N,
are not necessarily equal to each other.•:(5) The signal s(t) is a stochastic poeswith the same autocorrelation

function as the ni(t). Thus the autocorrelation of the signal ik SR(r) where S
is the total power in the signal.

There is no doubt that the reader may wish to question some or all of
these assumptions. However,, when the noise is dominated by reverberation,
as in active sonar at near ranges, it is not unreasonable to assume that the
noise and the signal have the same normalized autocorrelation functions. I',

the case of passive listening, if the noise and the signal are both broad band.
"the effect of the medium and the response of the transducers may result in the
same autocorrelation functions.

When one takes the ensemble average of ,'A (t). the average of the cross
product terms s) 1(t)n,) vanishes because of assumptions (3) and (I). The aver-
age of the terms n,(t)n,(t) (i ;L) vanishes because df assumptions (2) and (1).
This leaves

M A1
(V4 L= (n,2(t))+L_ (s,(t)s/t)). (10.5)

By virtue of assumption (4) (n, 2Q) = N, This leaves only the evaluation of

(s,(t) s,(t) ). By virtue of Eq. (10. 1) and assumption (5)

(s,(t) s1(t) ) = (s(t-to-T,) s(t-to-T7) )= SR(Tr-T,) .

(10.6)

The last step follows from the assumption of stationarity. It should be remem-
bered that T7-TI contains the direction to the target since the time delays Ti

) I . ,. -
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contain a part contributed by the water path which depends on the direction
to the source. For convenience let us write

1 = Ti-Tj = Tjri . (10.7)

One has from Eq. (3.14) that

R(r#) = R(ri,) (10.8)

When the beam is steered on the target the -,r all vanish and R(rio) R(O) = 1.
It will be assumed that when the beam is steered well away from the target,
all of the ri's are so large that every R(ri) = 0, i #/. This assumption depends
on the array and the properties of the time series so, consequently, it must be
checked for each special case.'

When Eq. (10.6) is substituted into Eq. (10.5) and use is made of Eq.
(10.8), one finds readily that

M M M

(YA)= L N, +MS+2S L • R(rii) (10.9)

1=1 i=1 /=1+I

The diagonal terms have been separated out in the summation since Ti, 0 and
. .R(r) = 1. As pointed out above, two cases are distinguished according as
the beam is pointed at the target or away from the target. These two cases
will be referred to as "on-target" and "off-target" and designated with sub-
scriptsOandL, respectively. Thus for the target case, sinre R(rt/) = 1, I

M

(YAO N, +M2 S, (10.10)

while for the off-target case R(rij) = 0, i 0/, and

(YAL ) Y-N +MS . (10.11)

The reader will notice that these two limiting values do not provide any meas-
ure of the directional response of the array. Nonetheless, it is helpful to draw
a schematic picture of response (yA ) versus a generalized bearing angle as in
Fig. 10.3.

3 Rudnick (1960) does not introduce this assumption and obtains, as a resalt, the term
a in his Eq. (28). However, this term constitutes a negligible correction for the special C

case considered by him
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•Y 

>

< A KYAL> +.AL

K<YAL> -VZAL

TBEARING RELATIVE TO TARGET

, 
Figure 10.3-A schematic drawing showing the various quantities

_.. • !•th 
a t m e asu re signal resp o n se an d ou tp u t n o ise.

SOne may define the average signal output as

A (YA) (YAO)-(YAL )=M(M-1)S , (10.12)

the difference between the on-target and the off-target responses. It seems de-
Ssirable to normalize this by dividing by the off-taiget response. This yields

,•': as the normalized response in the absence of clipping

A ( YA ) ( M-l)-

""YAL S (10.13)

where
M

N 1  
(10.14)

Forweak signals such that S <N, the normalized response increases propor-

tionally to S/N, but for large values of S/N, the limiting value of (M-l) is ap-
proached. In this upper limiting case the target energy dominates over the

noise even when the beam is steered away from the target.

In the preceding analysis the averages have been expressed as ensemble

averages. When the stochastic processes are ergodic, these ensemble avcrages

____.__.... ..
____"__"___ .... . . .... ........ ..... ... ....___________________________________ 

______________-__
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can be replaced by the corresponding time averages provided the averaging

time is infinite. In practice the time averages must be over a finite time so thatL : the approximate values YAL for (YAL ), etc." will fluctuate about the true
"value. In fact, this behavior leads to a design compromise, since in order to
increase the search rate one would like to make the averaging time as short as
possible compatible with the other requirements. It is necessary to calculate
the root-mean-square of the fluctuation of the value (YAL ) about the mean
(YA L ) since these fluctuations will appear as false signals. Because of the
non-linear nature of the squarer it is not possible to carry the assumption

through to a specific answer without introducing specific forms for the low-
pass fidter and the normalized autocorrelation function R(i).

If one is willing to assume that the low-pass filter in circuit 10.1(a) is
the RC-filter of Fig. 6.2, one can write down the answer directly from Eq.
(6.18). In this case the variance 0zA 2 of the output is

J +00

zA 2  RC CxA 2 ()d , (10.15)
-00

"where CXA (r) is the autocorrelation function of xA (t) defined in Eq. (10.3).
C ,If the reader is interested in a more general derivation of an expression for

UzA ' that does not depend on the assumption of an RC-filter, he can turn to
the Appendix 10.1., Equation (10.15) has two parameters; the time constant"of the filter which depends on RC and the integral of the square of the correla-

tion function which depends on random function xA(t). Rudnick (1960) re-
places these two parameters by timesr I and T as follows:

One can define a time T such that

+=0

CxA'(0)ri =f CxA 2(Tr) dT (10.16)

Rudnick refers to r I as the correlation time of the process XA(t). One notices

that this definition is equivalent geometrically to making the areas in Fig.
10.4(a) and (b) equal. An averaging time T, which in the case of the low-pass
RC filter is 2 RC, is introduced to represent the post detection averaging time.
With these definitions Rudnick obtL.nis his Eq. (16) which is equivalent to

ozA 2 = CxA 2(0) 2r1 /T I (10.17)

4Each quantity u, say, for which the ensemble average was designated (u) will have a cor-
responding time average dcnoted u.
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CA(T)

(a) PLO f OF THE SQUARE OF THE CORRELATIGO FUNCTION

S~C 2lr

xAT

-r - /2 0 + TI/2

(b) PLOT OF THE APPROXIMATION TO THE AUTOCORRELATION FUNCTION

Figure 10.4-Diagrams to illustrate the correlation time rj.,

For the special case of the RC low-pass filter and the normalized autocorrela-
tion function R(r),

+00

2, cc R 2(T)dr. (10.18)

-0

The assumptions numbered (1) to (5) above make it easy to calculate
CxA(T). One has

r

- C=%•
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CXA (r) [s#{t) + n&(t) { s,(t+r) + nt+r)

L= 21 (sxt) si(t+1) + sjt) nxt+T)

+ (ni(t) Sýt+i-)) + (n{t) nlt+r))] . (10.19)

By virtue of arguments similar to those following Eq (10.5) one can show that

-M 
M

C•(r) = R(T) + S R(T + rT) (10.20)
\,=•i= / i,j= 1

"This equation can be simplified if we are willing to make special assumptions.
If the beam is on-target, all of the r,1 vanish and

CxAO(T) = [ Ni +MV R(r) .. (10.21)

If the beam is off-target, the Tii (i A j) are presumably large enough to insure
that the nondiagonal terms in the sum can be neglected. This givesM

CXAL(r) = Ni + RSr) .. (10.22)

It is the latter case that is of more interest since one is concerned that the fluc-
tuations in the output might be large enough to simulate a target when the
beam is steered away from the target. Hence Eq. (10. 15) becomes (adding the
subscript L for off-target)

OzAta = Ni+M R2(r)di • (10.23)
i Ilf- I

It could be that fluctuations in ,AL may be a more serious limitation
on detection than the magnitude of AyA.. This suggests that perhaps the
normalized response defined in Eq. (10.13) is not the best measure of the

* --
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performance of the system and that instead one should define an output signal-
to-noise ratio ass

a ~~~(YA~~ (M -1)~ _ _ _ _ _ _ _

\Nout,A - Z 0 L S-0 ,(10.24)

N ICJf

M

where againN=- / N.
ML.

i= 1

The resemblance between Eqs. (10.13) and (10.24) is both pleasing and
suggestive. First, one sees that the random fluctuations due to finite averaging
times will exceed the target response unless

.• ,,.RC• IfR2(idr.
+00 

j

This restriction is important both for determining circuit parameters and for
calculating search rates. Secondly, one sees that the normalized response is
an equally important measure of system performance, Since (S/N)out can be
made infinite by letting RC-- -, it is clear that (S/N)out alone is not a suffici-
ent measure ot performance.

In view of the frequency with which Rudnick's paper is cited it is well
to relate these equations to his work. He assumes that the input signal-to-noise
ratio, S/N, is such that the root-mean-square fluctuation in the output, OzA L,
is just equal to the average signal output Ay-A. When the output satisfies this
condition, the processing gain is defined as the reciprocal of the input signal-to-
noise ratio. Or, in terms of the present analysis, the processing gain G is de-
fined as the value NiS that makes the term (S/N)out of Eq. (10.24) equal to
unity., Thus, using Eq. (10.18) and the definition of G,, one has for Eq. (10.24)

1

+Ml)j TT1 1+1 - r
G

SThere is no uniformity of usage rn this point. Thomas and Wilhams (1959) in their dis-
"•cussion of multiptlatve arrays define signal square of the mean system output.

noise variance of the system output.
sounds reasonable, but it yield% a quantity of dimensions (S/IN)2 which appears undesirable.

S 53W
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or

G + 1 = (M-l)

This is a slightly simplified version of Rudnick's Eq. (28). Rudnick refers to
M-l as the array gain and vT/ as the processing gain from post-rectification
integration. This result which shows that the gain can be factored into a prod-
uct of an array gain and a processing gain is a special case of a more general
characteristic. This subject will be returned to in Sec. 19.3.

10.4 Analysis of the Multiplicative Detector

In the following analysis of the response of the multiplicative detector
of Fig. 10.1(c) without quantizers the notation of Sec. 10.3 will be followed
as closely as possible. Further, the five assumptions regarding the statistics and
noise will still be assumed., Equation (10.3) for the sum of the outputs of the
hydrophones will be modified with superscripts to indicate which set of hy-
drophones is being considered. Thus the outputs of the two summers are
written as

M,

XA(l)(t) - {sit() (t) + 1.(1) (t)} (10.25)
i= 1

and

M2

XA( 2 )(t) : {S,(2) (t) + n,( 2 ) (t)} . (0.26)

When the ensemble average for the product (xA (1)(t)XA (2)(t)) is written
down, one sees that all products involving noise terms vanish. This leaves
only terms like ( si(I )(t) sl( 2)(t) ). Following the procedure of Eq. (10.6)
one has

(YA) (XAt(")XA (2)(t))

A!1 M2

(s(t-to-r,, ()) s(t-to-T,,(20) o (!10.27)

S. . . . . . .. tI -.
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Define

-rti = T10I) - T1(2) = -r1 ,(10.28)

-K ; so that

1-2))= SR(T 1 l)-T( 2 )) - SR(T,)

(10.29)

This notation yields

M 1  M 2

(YA = S2 21R(Ti)) 1(10.30)

When the beam is on the target, all the ,,= 0, and

(YAO) = M1 M2 S . (10.31)

When the beam is off the target, assume as in the past that R(r,,) - 0, This
gives

(YAL) = 0  (10.32)

Defining the average signal level, A (YA ) as in Eq. (10 12) one finds

A(YA ) = M1 A12 S . (10.33)

When this is compared with Eq. (10.12) one sees that, for a given total num-
ber of hydrophones, M1 + M2 = M, the avtwrage signal level is much smaller
when the hydrophones are divided into two groups and multiplied together..

One cannot normalize the average signal output as in Eq. (10.13) be-
cause (YAL ) = 0. However, one can compute a root-mean-square fluctuation
of ZA (t) resulting from the finite time average and compute a signal-to-noise
ratio as in Eq. (10.24). The output of the low-pass filter may be written, as
in Eq. (6.9),

0+

ZA (t) f eu/IR C xA(1)(u + t)XA (2) (u + t) du.

-00

.... (10.34)

a, .

---....- ----- .--- ---
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The product of two ergodic processes is not itself necessarily ergodic so one
must work entirely with ensemble averages for the moment.

When one takes the ensemble average of Eq. (10.34) and interchanges
the order of integration and averaging, all of the terms vanish except those of
the form

A t ,o- TjM,) s. + u -to -T(

Since s(.) is assumed to be an ergodic process, the average depends only on
ri, and not u and may be factored out of the integrand. Consequently, by
virtue of Eq. (10.27) one has

(ZA(t) ) = (YA (10.35)

as expected.

"i The ensemble average of the square of the departure of zA (t) from ( YAS~is

[ZA(t)_-(YA ]) = ([zA(t)]2)- (YA)2 (10.36)

As usual one writes
S0+ 0+

[ZA(t)]
2 

l--(RC)
2  du,f+ e(uJ+u2)IRCXA(I)(u,+t)

XA( 2)(u,+t)XA(I)(U2+t) XA( 2)(u2+t) du2

..... (10.37)

In order to evaluate the ensemble average of this expression one must expand
the product of the four time series. The details are given in Appendix 10.2.

After Eq. (A 10.8) is substituted into Eq. (10.37), one may introduce
the change variables

"N"v1 1u2+u ,+ /2" V2 -U2 U1

The integration with respect to v, can be evaluated immediately. This leaves

ZA I-(t)2--- f° exp(--2V v 2 I/RC) {dv 2
• - (ZA -,/"2 } FRC

Sd'I

,. *
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where

{} = M , M2 N(I)N(2) [R (,/2--,v2)] 2

" '€ M2

+M, N(l) S2 R(fv 2 + Tjl(2)) R (VrV2)

+M2 N(2) S L R(J2v 2 +rik(1))R(Vf/V 2)

i,k= 1

M, M 2

+ +SZ 2 [R(Ti,) R(Tkl) +

i.k=1 j,1=1

R(NV- v 2 - rki) R(-vv 2 + ril)

+R(%/-2V 2 +T'ik(1))R(..J'V 2 + rj/(2))]

(10.38)

This equation can be simplified by the change of variable, v 2 =IV It is not possible to say anything about this equation unless further as-
sumptions are made. Perhaps the least restrictive assumption, from the point
of view of the nature of the stochastic process, is the assumption usually made
for the off-target case As before, it will be assumed that when the array is
directed away from the target, any r which is not zero will be large enough to
make R(r) effectively zero. It was seen in Eq. (10.32) that (YAL) 0 for
the off-target case. Therefore,

0+ +00

OzAL =([zA(t)]2 )= 1 {.} ds (10.39)

-00 0

where

{}M I M 2 [T(1)N(2) +(N(1)+ /(2))S+S21 R 2(s) . (10.40)

One is tempted to discuss the conditions under which OzA L is a mini-
mum but this is not a relevant question since it is the ratio A (YA )/zAL that

. .. T-
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is important. Before considering this ratio, it is desirable to specialize the as-
sumption even further in order to obtain a comparison with the standard
detector.

Assume that M, = M 2 = M/2 and NO() = ; N(2) . In this case one has
for Eqs. (10.39) and (10.40)

+00

zM L 2 M2 [;+S] 2 16 [R(s)l ds . (10.41)

Consequently, when one follows the usage introduced in Eq. (10.24) for the
definition of signal-to-noise ratio, one obtains

-A ~(YA M( out zAL C 00 +% (10.42)

[ LN + SI [RC .,R()1 2 d

for the multiplicative array. On the other hand, one may write Eq. (10.24) for
the standard detector as

1 (10.43)
j [;V + SI [k-f [R(s)J 2

ds

When the number of hydrophones, M, is large enough that M-1I M, the two
systems have the same signal-to-noise ratio. However, if there are only two
hydrophones in the array, the multiplicative array is better by V2 or 3 dB.

Usher (1964) has considered the response of the multiplicative receiver I
when the noise level at each hydrophone is itself a random variable. This en-
ables him to arrive at special expression for NM1) and N(2),

10.5 Digression on Ergodicity
The reader has undoubtedly noticed that the notation in the last two

sections has fallen short of the ideal set forth in the earlier chapters. In particu-
lar ( x ) was used as before to designate an ensemble average, but i was used
in this chapter to denote a finite time average. This latter is an abbreviated
notation which is not ideal. In the earlier chaptersx was used to denote thetime average defined by

lim I + T/2

T-+*o T J x(t) dt , (10.44)

-T/2

if

- C'%~ .|

-1-.
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while 3T was used to denote the finite time average

+ T/2

x(t)dt . (10.45)

-T/2

This change of notation may tend to obscure a logical point that should
be mentioned. In the discussion of the standard detector in Sec. 10.3 the sum
XA(t) defined in Eq. (iW.3) is an ergodic process since it is the sum of ergodic
processes. Therefore, the time average defined in Eq. (10.44) is equal to andcan be designated by (x ) so that one may simplify the notation by using x for
the finite time average of Eq. (10.45). Further, although the signal output
defined in Eq. (10.12) and the mean-square fluctuation defined in Eq. (10.23)
are ensemble averages, they represent equally well the time average and the

-_ fluctuation in time, respectively.
On the other hand, the output of the multiplicative detector involves

the product of two ergodic processes. It is not necessary that the product of
two ergodic processes be ergodic, so one cannot equate ensemble and time
averages without further restrictibns on the stochastic processes x#t) and
n#t). Consequently, the ensemble average introduced in Eq. (10.36) is not
tnecessarily equal to the corresponding time average. Nonetheless, this assump-
tion, which seems reasonable, has been introduced tacitly and regularly in
studies of the multiplicative detector.

"This point may be stated another way by saying that the root-mean-
square fluctuations O:A L computed in Eqs. (10.39) and (10.41) are based on
ensemble averages and may not necessarily represent the fluctuations in the
output of the receiver considered as a function of time. However, it was
pointed out in Sec. 3.1 that in the sonar application the source, receiver, tar-
get, and medium were normally in a state of motion so that perhaps the suc-
cessive outputs of the receiver constituted samples from an ensemble rather
than from a time series. If this be true, the ensemble averages are applicable
in every case.

10.6 The Advantages and Disadvantages of Clipping
and the Effect of Sampling on Signal Output

In the analyses of the last three sections the systems were ideal and the
only non-linear processes introduced were those of multiplication which are
linear in energy. The only loss of energy resulted from the low-pass filters. A
change to digital techniques is most attractive from the viewpoint of equip-
ment design, since the electronic circuits or magnetic me'-"ries can be made
more compact and stable and problems arising from an.. ,,fier gain and stabil-
ity are less severe. These and other considerations have caused the designers

* I
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of equipment to consider clipped or, more generally, quantized signals as illus-
trated in Figs. 10.1(b) and (c). A factor that has led t. the popularity of
binary clipping is that one does not need to use an AGC circuit. Binary cir-
cuits can be built which will operate reliably with a dynamic range of 80 dB
in the input. A further advantage of binary clipping is that when the system
works improperly it usually fails completely so the operator is alerted. Linear
circuits can function poorly without the operator being aware of it,

In the following analyses it will be seen that digital sampling becomes
more advantageous when the noise level fluctuates widely from hydrophone
to hydrophone. Although this question will be considered quantitatively, it
is obvious qualitatively that in a linear system the output is dominated by
those hydrophones which have the greatest power levels. On the other hand,
it has been found that bearing accuracy and the ability of a system to resolve
two targets of slightly different bearing suffers seriously when the signals are
clipped.

"When one replaces the analog messages by binary samples, there are two
factors that act to change the system. In the first place the time intervals be-
tween the samples are integral multiples of some sampling time ro so that the
pattern formation is not likely to be optimum. In the second place there is
the effect of the non-linear quantization. It is desirable to discuss these effects
separately since they can be changed independently of one another. The ef-
fect of time sampling on the array gain will be considered now while the effect
of quantization will be considered in See. 10.7.

J Ideally, when the array is pointed at the target the time delays in the
hydrophone circuits are adjusted so that all of the signals sLt) of Eq. (10.1)
add in phase. This assumption was utilized in Eq. (10.10) when it was as-
sumed that R(r 1i) = 1 for all values of i and / when the beam was pointed at
the target. Actually, if the delay times are quantized, one may assume R(rTi)
= 1 with strict accuracy only if i = j. In the case that i O/ there will be fluc-
tuations so that rii will assume one of the values -r,, 0, +•r,. This may be
assumed to be a random phenomenen when many directions for the pattern
are considered. When this source of error is introduced, Eq. (10.10) must be
replaced by

N M M

(YAO) L Ni+MS+2S R(e•i) (10.46)
i=1l i= l ii

where eq takes one of the values -ro, 0, +,o-.
If the time series are continuous, the autocorrelation function has a zero

slope at the origin so the Maclaurin's expansion begins

S~~~~R(eol) =R(0) + V-R()•i .,(10.47)

I. . --
!- ------ ~--------------- -
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The quantity R"(0) is of interest in its own right. If both sides of Eq. (4.7)
are differentiated with respect to T and T is set equal to zero in the resulting
equation, one has

~ 'V +00

C(0) R"(0) = -f (2irf) 2 p df

-00

But

+00

L4o) Af) df,

so

-- (2jr)2 P(t) df

-00

R"(0) =

f P(t) df
-00

= -((27fj) 2 )P (10.48)

In this notation P(t) is treated as though it were proportional to a probabdity
density for the frequency f,-

Thus one may obtain a value for R"(0) for the noise if the power spec-
trum 1*") is known, Rice (1944, p, 193 of the 1954 Dover Ed.) has shown
that the ratio on the right is related to the expected number of zeros per sec-
ond for the process so R"(0) can be determined rather easily from experi-
mental data.

One finds from Eq. (10.47) that, since R(0) = 1,

M M M M

2=I =+ R(el,) a M(M-) + R"(0) C,

= M(M ){ I + YzR"(0) ( C, )1  , (10.49)

where by definition,

- I

*
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2! M M 2

e 2 (10.50)

is an average value of the square of the error in the relative delays eq. With
the aid of this abbreviated notation one can replace Eq. (10.10) with the
more accurate form

M
A = ft N, + [MM2 M(M-I) ((27rf) 2 )p(ej2)] S

S• i= 1

(10.51)

In this case the average signal output of Eq. (10.12) becomes

S~A (yA =(YAO )-(YAL )=M(M-1)S 1- ((27rf)2 )p (6i,,2

(10.52)

From this equation one can obtain an idea of how fine a sampling interval is
needed for a given power spectrum.

10.7 The Standard Detector with Perfect Clipping

The effect of perfect clipping (without sampling) can be illustrated by
analyzing the circuit of Fig. 10.1(b) and comparing the analysis with that
given in Sec. 10.3 for the circuit of Fig. 10. 1(a). The notation and the assump-
tions introduced in Sec. 10.3 will be retained. In particular the subscript Q
will be used to remind the reader that clipping is present and each quantity
with a subscript Q in this section can be compared with the correspuiiding
quantity with a subscript A in Sec. 10.3. Thus the output of the summer is

M

XQ(t) L 2 ( s,() + ni(t)}Q ,(10.53)

and the autocorrelation function of the output of the summer is

L
I•@ " "• - •,.,. ,
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M M

=xQ(t) xQ(t+ ) ( +

*s{(t+r) + nh(t+r)}Q) . (10.54)

One cannot expand the product in the right member of Eq. (10.53) into
a sum of four products as in Eq. (10.19) because the clipping action is based
on the sum si(t) + n,(t). However, when the inputs to each pair of clippers
constitute a correlated, bivariate gaussian process, one can utilize the results
of Sec, 3.7 to calculate the quantities in the angular brackets. It was shown
in Eq. (3.39) that the correlation function CQ(T) of a clipped process is related
to the normalized correlation function RA (T) of the unclipped process by

CQ(r) = =sin- RA(r). (10.55)

If one denotes the normalized crosscorrelation function of a pair of un-
clipped signals by Pjij(), one has6

Sp/(r) = ({si(t) + Nit))}A {S(t-r) + n1(t+r)14 )
IS + Nil'/ IS + N, I

By repeating the arguments leading to Eq. (10.9) the reader can show that this
"equation simplifies to

S R(7+,r,/)

[S+N,I '1 [S+N•j'/2 '
juj7) (10.57)

= R(r) , i=1

In deriving Eq. (10.57) one utilizes the assumption that the noise and the sig-
nal have the same normalized autocor,.lation functions.

When Eq. (10.57) is substituted into Eq. (10.54), one has

(XQ(t) XQ(t+T)) = Al p(r) +

Al M
4 sini' SR({"+ ri (10.58)sin- [S+N, ] '1 [S+N)i I V
a=1 I =i+ I

6tUnfortunately, this assertion anticipates Eq. (11.9). The reader may prefer to read
Chapter XI before completing this section.

! I' ,• • •- - . . .-- ,
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The average output of the squarer, (yQ ), is obtained from this equation by
setting T = 0 As usur,, two cases will be distinguished; on-target denoted with
a subscript 0 and off-target denoted with a subscript L. In the on-target case,
Tv = 0 and

M M rs

(YQo M +~~ j sin-' ~S+NIrN (10.59)
i=l j--i+1 'l i ) j

In the off-target case it will be assumed as before that the 7-, are so large that
. • R(•'ij) = 0. This gives

(YQL =M. (10.60)

The average signal output analogous to Eq. (10.12) is

J A(yQ) = (YQO' -(YQL

S~M M

4 sin-' S+.SI . (10.61)=f [S/ , M [StNI
i=I i=j+l

One cannot.pursue this development further without introeiucing some
approximations and assumptions. For example, one can assume .nat the sig-
"nal power is much less than the noise power and use the first one or two termn
of the power series

sin-' x+!x3+ 3 s+... *. (10.62)
6 40x

In addition, one must postulate some probability density for the noise levels
Ni. The reader is referred to Usher (1964) who develops answers for two
such probability densities.

In order to obtain a formula for comparison with the results of Sec.
10.3, assume that each of the Ni is equal to N. This assumption is more strin-
gent than that of Eq. (10.14). The use of this assumption and the first term
of the power series in Eq. (10.62) enables one to write

A (yQ ) 2 MM-1) S (10.63)
7r N+S

When this expression is normalized by dividing by the off-target signal response,

Eq. (10.60), one has

41.
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T3T~ i 2 TV(10.64)

N

which may be compared with the result in Eq. (10.13) for the unclipped case.

One sees that the clipping introduces a deterioration in the normalized re-
sponse corresponding to the factor 2 /ir, i.e., about 2.0 dB. However, one
usually judges systems on the basis of the deterioration in the signal-to-noise
loss introduced by clipping. This is usually nearer 1.0 dB.

The analysis of Usher shows that the case in which all the Ni are equal
is the one least favorable for the comparison, and that as the range of possible
values for theN, increases, the performances of the "clipped" detector becomes
more favorable compared to and even surpasses that of the linear detector.

The question of the fluctuations in the output of the clipped detector
has yet to be considered. In order to simplify the analysis assume that the
signal sjt) is so weak compared to the noise n•t) (i = 1, 2 ..... M) that thb
signal may be neglected in the calculation of the root-mean-square fluctuation,
GzQL, when the beam is off-target. This assumption is not unrealistic, since
these fluctuations in the absence of a signal could give rise to false target
decisions.

When tle signal si(t) is neglected, the autocorrelation function, CxQ(r),
of the input to the square law detector is given by Eq. (10.54) with sAt) = 0
S(i1, 2. M); that is

M M

CXQ(T) = 21 1 (nQ(t) nQ(t + r))

i=1 j=l

M

= 2T-' sin-' R(r) = 2 sin-' R(7) . (10.65)
i= 1

The individual noise levels Ni do not appear in this answer since the clipping
process eliminates these differences.

One may use Eq. (10.15) again to calculate the variance of the output,
zQ(t). When the beam is pointed off the target, this gives

+00

=2 4M 2  J [sin-' R(i)] 2 dT . (10.66)UzQL 12

-00

|. k0
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This quantity cannot be compared directly with U'zAL 2 of Eq. (10.23), but
one can use the approximate Eq. (10.63) to calculate an output signal-to-noise
ratio as defined in Eq. (10.24). This definition yields, in the present case,

(N out,Q = z__

(M-1)-.

1 1' [sin-' R(r)] 2

I which should be compared with the result of Eq. (10.24). Now

S)[sin-' R(,')] 2 I> R(-T)] 2

A- •with equality only in the case R(r) = 0. Consequently, the denominator ofF" Eq. (10.67) is larger than the denominator of Eq. (10.24). Hence,

(Noo> ( SN o

for the special case Ni = N (i = 1, 2, ... ,M). Better approximations for the
.i -. integral in Eq. (10.66) are derived by Rudnick (1960) and Usher (1946).

10.8 Suggestions for Further Reading

The analysis of the circuits of Fig. 10.1 is continued in Chapter XII. The
reader is referred to the paper by Thomas and Williams (1959) for an analysis
of the circuit of Fig. 10.1(c) with ideal clippers.

The reader should realize that the ideal clipper whose output is ±1 is the
most simple form of quantizer, It may well be that ultimately sonar systems
will utilize more sophisticated quantizers. The relevant theoretical questions
of multilevel quantization has been studied rather extensively by Professor
Bonnet and his colleagues. (See Bonnet, 1964a.)

The reader will find interesting results on product arrays in Berman and
Clay (1957) and Fakley (1959). There are several interesting papers on linear
and clipped signal piocessors in an unpublished report from the Dunham Lab-
oratory, Yale University (1963).

The DELTIC correlator mentioned in Sec. 10.2 is a useful device for
which many applications in underwater acoustics have been found. A descrip-
tion of the DELTIC and other correlators is given by Allen and Westerfield
(1964).

2I
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APPENDIX 10.1

Alternate Derivation of Eq. (10.15)

It has been assumed that s{t) and nAt) are gaussian processes. Hence,
x(t) is a gaussian process since it is a finite sum of the si(t) and n1(t). Conse-
quently, one can utilize Eq. (6.16) to write down the autocorrelation function
of the output of the squarer, CyA(T) in terms of the autocorrelation function
of the input, Cxt (T). One has

CvA(T) = CxA 2 (0) + 2CxA 2(r) • (A 10.1)

"Since we are interested in the effect of a filter on YA (t), it is desirable to trans-

form this autocorrelation function into a power spectrum. Using Eq. (4.8) and
the formula, Eq. (2.21), for the delta function, one findsiI

" WyA~f W CxA '(0) 8(f) +2 CxA'(T_)e'-,2rffrdz .

.. (A 10.2)

The first term on the right is adc spectral component which is the limiting
value obtained for an infinite averaging time. The second term of the right
member -.ý the power in the fluctuation of the output which causes departures
from the average value. The effect of this term can be reduced by filtering.

Let SyAOf) be the power spectrum of the fluctuations associated with
the second integral on the right of Eq. (A 10.2). If Y(j) is the frequency re-
sponse of the low-pass filter, the power spectrum of the fluctuations in theI ~ output is

SzA~f W i W) I' SyAfW .(A 10.3)

By virtue of Eq. (4.13) one can express the mean square value of the fluctua-
tions resulting from SzA (f) as

OzA = CLzA(0) 1( 2 ISyA(f) df (A 10.4)

"law-

It - ~ '
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This is as far as one can carry the analysis without introducing specific
circuits. Suppose the low-pass filter is the simple RC-circuit of Fig. 6.2. Then

(f) 12 + (flfo)2 ]-1 (A 10.5)
S t"

where fo = (21tRC)" , This still does not enable one to evaluate the integral in
Eq. (A 10.3), but if fo is large enough, one can approximate this integral by

* assuming that SyAf) is a constant, SYA(O) over the range of frequencies in
which I ?(J) 12 is significantly different from zero. Hence

+00

qA 2 -SyA(O) I l+(f/foSyA(O)

"But SyA (A) is the Fourier transfoim of the fluctuating part of CyA (T) and 7 0fo
I/2RC. So

+00

0zA - C oo CXA 2(r) dT. (A 10.6)

iI
I

|I
I 

I
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APPENDIX 10.2

Details Relevant to Eq. (10.37)

Introducing an impromptu abbreviated notation, one may write (by
virtue of Eqs. (10.25) aid (10.26))

XA •1 1 ~)u + t) XA +)(U ) +t (14(2 +tX (14(2 +t)0

/ {.M (A 10.7)
1 =1 k=1 1=1

where

{'} =[si()(ui+t)+n1 (')(ui+t)] [sp(2) (u+t) + n/(2)(ui +t)] X

[Sk(') (u2 +t) + k (12 +t)] Sl2) (u2+t) + na(2) (u2+t61

If, for the moment, one omits me arguments of the functions, one can write

{ } = s(2)Sk(l)s2) + si(')Sj(2 )nk(1)nf/ 2 )

+ sI(l)s,(2)sk(1)nl(2) + Si(l)S,(2)s52)nk(1)

+ n,(l)fn( 2 )sk(l)sj( 2) + nS(1 )fjl 2 )nk(1 )nf 2 )

+ ns)ni2)5k(')n1( 2) +()n.(2)Sl(2)nk()
+ Si(InG()SJO(Is/2) + s5,0)•/2)nk (1)ni(2)

+ siplW2) sk(l )nt2) + si(1)nj(2 )Sl(2)nk(1)

+ SQ)ni( )Sk(l)S(2)+ S 2 )ni(o)trk(l)nl(
2 )

+ S,(2 )nf( 1)Sk(l)nl(2) +. Si12)fni)S1, 2 )nk(l)

The noise and the signals are independent of each other and each has
an average of zero. So when one takes the ensemble average one can be cer-
tain that the terms underlined vanish. This eliminates one-half of the terms.
Since the noises at the different hydrophones are assumed to be independent,
one can eliminate immediately the terms of the form s s n(2) 2

4 4--- -
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Hence, one has

M1  M2

L)i ~ ~i,k=ljll

S{ : } si(1)s(2)s (1)sI(21 + ni(1)nk(1)ni(2)nt(2)

+ Sim)sk (l)ni(2)nl(2) + sj(2)sj(2)nj(1)nk(1) .

The noise terms n(1) and n(2) are independent of each other so

( ni(1nk(1)ni(2)nQ•) > n, (1)nk (1) > ( ni(2)nl(2)

Similarly for the product of two noises and two signals. Finally, the signals
sN(P)(-) (X = i, j, k, 1;,u = 1, 2) are all obtained from the same function s(')
through a time shift. Therefore, although we started with a multiple product
of stochastic processes to which the ergodic hypothesis did not apply, the in-
dependence assumed for the individual terms was so great that we have beeni
able to reduce the ensemble averages to elemental terms to which one can
"apply the ergodic hypothesis.

Thus, one has
( nfl)(uI + t) nk(1)(U2 + t) ) = N,(')R(u, - U,) 6ik

( n,(2)(ul + t) nl(2)(u2 + t) ) = Ni(2)R(u2 - U0) 6/!]
In order to discuss the ensemble average of the signals it is necessary to

define more time delays. In addition to Eq. (10.28),

TI/ = TI - T , (10.28)

let us define

7ik)= Ti") - TkOl),

and

7,t(2) = T(2)- Tt(2) ..

-- I



APP 10.2 3 DIMENSIONAL ARRAYS OF NONDIRECTIONAL HYDROPHONES 205

With these definitions one can write

(si(.)(u] +t) Sk(l)(U2 + t))

= (st + u - to - T()) s(t+ u 2 - to- Tk()))

= SR(U2 -• 1 +Tik(l))

and

"(•,(2)(u, + t) Sj(2)(u2 + t))

= (s(t + u, t - T,(2)) s(t + u2 -t -Ti (2)))

= SR(u2 -u 1 + •/l(2))

Finally, one needs the fourth order average

"(Si(1)(UI + t) s,(2 )(uI + t) Sk(1)(U 2 + t) S( 2 )(U2 + t))=

( s(t + ul - t, - T,0l)) s(t + u, - t, - T1(2)) SOt + U2 -to -Tk l) •

sOt + u2 - t, - T1t2)))

Since s(.) is a gaussian process, one can use the equation given by Freeman
(1958, p. 246, Eq. (8.5-4) or by Middleton (1960, p. 343, Eq. (7.29a)). This
equation reads, omitting once again the arguments,

+(s)si(2)Sk(l) s s) s1( )s1 (2 ) + ( (sk)s(2) )

+ ( s/(2)sk (l) s, ( s()sl(2) ) + ( si(l)sk (1) ) s/(21$1(2))

= S 2 [R(r,)R(rkl) + R(u 2-ul-Tk,)R(U2-UI +TI)

+ R(u 2 -u1 +T1t(I))R(U 2 -U r1/lj(2 )) ]

Upon collecting terms one finds for Eq. (A. 10.7)

(.M = MMNMI)N(2) R(u 2 -u 1 ) 2

1,l= I

.M 2
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mI
I, M=

S+ M2/V(2) S R(u2 -U I+T~k(1)) R(U2-UlI

!MI M2
S+ S2 [R(rii) R(,rki)

i,k= I _,1=1

+ R(U2 -Ul-Tk) R(112 -Ul +7t)0

+ R(U2 -UI +, ik(1 )) R(U2-UI +tit(2)) (A 10.8)

where, as before,

TV, "(1) -1N i (l) ;,(2) 1 N(2)
M, I=

I

- w
U I I - -



CHAPTER XI

.e Multidimensional Stochastic Processes

11.1 General Considerations

The theory presented in Chapter X suffered from a serious restriction
in that the noise at each hydrophone was assumed to be independent of the
noises at the other hydrophones. This assumption simplified the analysis
considerably but it is not realistic, since the noise wave field may have a sig-
nificant correlation between different hydrophones. However, before the
effect of this correlation is introduced into the discussion of the circuits of
Fig. 10.1, it is well to consider in general the theory of multidimensional
stochastic processes.

The discussion of a stochastic process can be generalized readily by con-
sidering a multicomponent process for which a sample is not one but M func-
tionsx(')(t, X), i = 1, 2,. ,,M. If M = 2, one may associate the two compon-
ents to form a complex number (or vector)

- z(t, X) = x(1) (t, A) + a (2) (t, X)

For general values of M one may consider the sample functions [x(l), x(2 ),
. .. I, x(M)] for any value of the time t as a vector in an M-dimensional space.
Naturally, the M-dimensional process can be generalized by letting each com-
ponent of the M-dimensional process be a complex number.

For the moment let us restrict the discussion to M = 2 and think of the
process as generating a single component having a complex value as in Eq.
(11.1). In this case one must introduce complex conjueates for many of the
factors in the formulas of the first ten chapters, but if this be done, valid re-
suits will be obtained. This modification is motivated from the mathematical
point of view because the product of a complex number with its complex con-
jugate yields a real number which is the square of the magnitude of the com-
plex number. The introduction of the complex conjugate is also desirable
from the physical point of view. If, for example, an alternatirg current is
represented by a complex number, the power dissipated !,. d one-jhm resistor
is one-half the product of the current and its complex conjugate.

In keeping with this suggestion onc changes the definition of second
order joint moments in Eqs. (3.14) and (3.15) and in the definition of the co-
variance function in Eq. (3.13) by replacing the second factor with its

207
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complex conjugate. In the case of ergodic processes QT) is in general complex
but C(0) is real. The Schwartz inequality, Eq. (3.17), becomes

f (x) g*(x) A < fAx) '(x) Afx g*(x)ax

a I a a

S....(11.2)

for complex functions. Finally, the definition of a gaussian process that is
given in Sec. 3.6 is still valid but the matrix elements amn and the second
order moments/il will be complex quantities.

11.2 Covariance and Correlation Functions

In the case of underwater sonar systems one usually has several trans-
ducers, say M transducers, as in Fig. 10.1 (a), whose outputs constitute an M-
dimensional random process. The set of M time functions 1x(t)(t, A) , 1 = 1,
2, .... , M, constitutes a single sample of the ensemble so it is characterized by
a single value ?, of the ensemble variable. The parameter X is a member of the
set of points A that characterizes the ensemble. Thus one is led to consider
a vector stochastic process'

[xI (t, A),x 2 (t,.X) ..... ,XXM(t, M)] (11.3)

with M real components.

When one has an M-dimensional, real stochastic process whose compo-
nents are given by Eq (11.3), one can form M2 real covariance functions de-
fined by[Ii ~ (xiit, A) Xktt + T, X)) . (11.4)

It is convenient to think of these M 2 quantities as the elements of an M X M
matrix which we shall denote the covariance matrix. If the process is station-
ary, the covariance functions depend only on r so one can define the correla-
tion matrix as the matrix whose elements are the correlation functions defined
by

C1(r) = (x,(t, X) Xk(t+r,) . (11.5)

5The index %uperscnpt (t) has been replaced for convenience by the index subscnptI.
This should cause no confusion with the earlier use of subscript i for a time sample. i

I" \, .. "
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One sees readily that

Clk(-r) = Ckl(+r) . (11.6)

If, in addition the process is ergodic, one has

+ T/2

Clk(T) = Irm I xj(t, X) Xk(t + 7,X) dt . (11.7)

T-, _JrT/2

The limit on the right of this equation will be called the time correlation
function.

Since the components x,(t, X) are real, the following inequality is true
for all real a,

, [x,(t,, X) + axk(t + TX)' /> 0.

Upon expanding the square and taking ensemble averages one finds

a2 (xk2(t+T,X)) + 2a(x,(t, X)Xk(t+T,X))

+( x1 (t, A)) > 0

This inequality must be valid for all real a so the discriminant must never be
"greater than zero. Hence, one has

(x,(t, X) xk(t + T,X) )2 <<. (xl'(t,, W) (Xk 2(t + T,X)).

(11.8)

If the process is stationary, the ensemble averages can be replaced with the
correlation functions as defined by Eq. (11.5). Hence, one has

Cl'T < C11(o) Ckk(O)

or

ICIk(T) <l ( 1.9)
VC0(o) Ckk(O)

as a fundamental inequality for tie elements of the matrix (C0k). Equation

(11.8) is an equp, ,n for ensembk averages that is the analog of Schwartz's
inequality. Equation (11.9) contaias Eq. (3.20) as a special case forj k.

- -
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11.3 Power Spectra

One would like to assume that the M 2 correlation functions C/k(r) have
Fourier transforms in the same sense that the correlation function C(T) of a
single component process has a Fourier transform as in Eqs. (4.7) and (4.8).
The existence and the properties of these Fourier transforms are demonstrated
in an important paper by Cramer (1940). Cramer establishes the necessary
and sufficient conditions for the existence of distribution functions which can
be interpreted as integrated power densities and which constitute the Fourier-
Stieltjes transform.

If these distribution functions are absolutely continuous, there exist
functions Cgk(J) which are the conventional Fourier transforms of the Cik(r).
It is not unduly restrictive to assume that for the class of noises and signals
considered in this book there exist Fourier transforms of the correlation func-
tions so that one may always write

jCk(t) = J ikG e+L2ffftdf (11.10)
-00

+00

Cek(l) = J Cik() e-i2rft dt " (11.11)

As long as one restricts the discussion to real functions xi(t, X), the func-

tions Cik(r) are real, and one must have

CIk(-D) = Clk*(f) . (11.12)

Since the functions CIOk() are real, it is easy to show with the aid of Eqs.
(11.6) and (11. 11) that .i

Cjk(f) = Ckj*(f) (11.13)

and, consequently, that

C-k(-f) = Ckl• (11.14)

The Fourier transform CiYf) of the autocovariance function C11(T) for
one component is identical with the function W(f) defined in Eq. (4.8) and
denoted the "power spectrum" of the stochastic process x,(t, X). rhis nota-
tion will be generalized and the functions CIk(f) will be called the "cross power

S. . . . • - . . .. .. . . . . . . . .. . _ • . . . . . . . . . . • . . . . . . . .



MR1

SEC 11.3 MULTIDIMENSIONAL STOCHASTIC PROCESSES 211

spectra." The convenient notation W(f) used for processes with only one com-
ponent will be given up for the sake of uniform notation. The physical mean-
ing of the functions Cik(f) sometimes puzzles the student. It is a measure of
the power that is common between the two stochastic series. Two physical
interpretations will be given.

As the first example suppose that three independent, stationary noise
sources are connected with summing resistors as indicated in Fig. 11.1. Sup-
pose that each noise function nj<t) has a mean of zero and a root-mean-square
value of u. Suppose further, as indicated in Fig. 11.1, that these outputs are
combined in a linear manner to give two signals e (t) and e2(t) defined by

e1 (t) = ani(t)+bn2(t) , a 2 + b2 
= 1 , I

e 2 (t) = cn2(t)+dn3(t) , c2 +d2 
= 1

If we assume that the three sources are independent, and stationary, a
moment's calculation shows that

(ei 2(t)) = a2 (nI 2(t) + 2ab(n,(t)n2(t))

+ b2 (n2 
2(t))

= a 2oa + b2o2  2.

n t)(t) a n(t) + b n2(t)

Se 2(t) c n2(t) + d n3(t)n3(t)

Figure 11.1-The formation of two noise signals, eI(t) and C2(t) from
three independent noise sources.

N
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This sequence of steps follows since n(t) and n2 (t) are independent and each
has a mean value of zero. Similarly one can show that (e 2 

2 (t) ) = U2.I- •The crosscovariance function can be computed from the following en-S ~~semble averages: !

(e 1(t)e 2(t+i)) = ac(n 1 (t)n 2(t+r))

+ad(ni(t)n3(t+ r))

+ bc (n 2(t) n 2(t + T)

+ bd (n 2(t) n 3 (t + r))

= bc(n 2 (t)n 2(t+r))

[ ) The last equation follows from the independence of the three noise sources
r.. nft). The last member on the right is a function ofT only since n2 (t) is sta-
r ,tionary. Therefore, the function on the left is also a function of r only.

Hence, one obtains the crosscorrelation function

C1 2(ir) ( ei(t) e 20 + r) ) = bc C2 2 (T)

Thus the crosscorrelation function depends only on the nature of the noise
source n2(t) that is common to ei(t) and e 2(t).

"Since I b i< I and Ic 1< l,onehas IC12(0 Ij< tC 22() I< lIC 22(0) I
= 02. The second step follows from Eq. (11.9) for a single noise.

"The second illustration of the interpretation of cross-power density will
be given at the end of Sec. 11.4

Two important properties of the power spectral functions Cek(f) are
proved by Cram&r (1940). These results will be stated for future reference
for the special case of absolutely continuous power spectra. Although the
components Xk(t, X) of the M-dimensional process have been assumed real.
the power spectral functions Cek(f) will be complex when / / k. Nonetheless,
Eq. (11.13) insures that the quadratic form

M

SICjk(f) zIZk* 
(11.15)

l,k= I

is real for all sets of complex numbers Iz, I. Cram& proves that this is a non-
negative Hermite form for all values f. In the case that Al 2, this result re-
quires that

g .
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for all f

11.4 The Effect of Filters on Multidimensional Processes

Suppose that each of the M time series of Eq. (11.3) is passed through a
filter whose impulse response is Y,(t), i = 1, 2 ...... 1. As mentioned in Sec.
2.2, Y#(t) 0- , t < 0, but it may contain a term involving 6(t). The output of
each filter is a new time series y,(t, X) related to x1 (t, X) by, see Eq. (2.15)

yi(t, X) = xi(t-r, X) Yi(r) dr . (11 17)

0-

The evaluation of the correlation function

Dik(r) = (y,(t, X)yk(t+T,W)) (11.18)

is given in Appendix 11.1 for the special case th:at the set of functions {xj(t, X)}
are stationary in the wide sense. There it is sown that

+00

)D,k(r) = f cik (f *(f) Yk0 ( e+, 2 -1, df (11.19)

and

Djk(f) = Cjk() Y,*(f) Yk(f) - (11.20)

One might note for future reference that ,/(f) is real and that

D10-. = Dk*I) . (1121)

We can now return to the illustration of the physical interpretation of

Clk(T) by supposing that each of the filter responses is zero everywhere except
in two small bands of width W, centered about +fo and -f, The filter response
is assumed to be unity in these small bands. This ideal filter cannot be realized
exactly, but it can be approximated arbitrarily closely. It is supposed further
that W is so small that Clk(f) is essentially constant and equal to Olk(±fo) over
the pass-bands of the filters. For this ideal filter Eq. (11.19) becomes

Dlk(r) = W{Cjk(-fo)e'l2 + io k(fo) e+i2nfo7} (11.22)



214 SIGNAL PROCESSING OF UNDERWATER ACOUSTIC WAVES SEC 11.5

By virtue of Eq. (11.12) one may write

Dik(r) = 2W I Cik(fo) I cos { 2nfrT + arg Cek(fo)} (11.23)

Alternately, one may take the Fourier transform of Eq. (11.22) to get

DIk(f) = W•Cik(-fo) 6 (f + fo) + W Qk(fo) 6 (f -fo) • (11.24)

One is now in a position to interpret the covariance function. If two noise
signals are passed through identical, ideal narrow band-pass filters, the outputs

will have a covariance function which is an undamped cosinusoid of amplitude
2 W I eCk(fo) I and phase-arg COk(fo). Alternately, this covariance function
will have an associated power spectrum which consists of two line spectra
"located at ±fo and having complex amplitude equal to W Clk(±fo). These
physical interpretations of the covariance function are given by Mermoz

, (1964). V
It is understood, of course, that if the situation described in the last few

paragraphs were carried out experimentally, the observed value for one trial
may deviate from the ensemble average 2 W I Cjk(fo) I . This behavior is
closely related to the conceptual experiment of passing a noise through an
extremely narrow band-pass filter. The output will resemble a smusoidal wave
whose frequency is equal to that of the center of the pass-band. However,

neither the amplitude nor the phase of the output are deterministic.

11.5 The Danger in Omitting the Easemble Average

The reader will have noticed that in each of the examples utilized to
discuss the concept of the covariance function the ensemble average was
carried out. This is an essential feature the omission of which can lead to
errors. The danger arises because one often has only a single sample of the
process and cannot perform an ensemble average. The following argument
illustrates the nature of this error.

Suppose that one has a sample of finite length of each of two members
of the multidimensional process of Eq. (11.3). One calculates the time cross-
correlation function

+00

TCik(r)= xh At) Xk At + r) dt (11.2&5)
-00

where the subscript T reminds the reader that only a finite sample of the data
is available. One can apply Parseval's formula, Eq. (2.6) to the right member
to give

t -1~
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+00

TCik(T) f L ij.(f)kT{I) e-i2 ffr df. (11.26)

At this point one is tempted to move the factor 1 IT inside the integral
*" and to define

XiTV(f) Yk TA) (11.27)

as the cross-power density associated with the cross-correlation function
TCjk(r). This procedure would give a formula analogous to Eq. (4.7) for a
single component when one takes the limit as T -- -. This argument is in error
since it does not introduce the ensemble average. In order to obtain correct
results one must take the ensemble average of Eq. (11.26) and, by the same
token, define the cross-power density as the ensemble average of the expres-
sion (11.27). The reader is referred to Middleton (1960, pp. 139-141) for
further details.

11.6 Suggestions for Further Reading

"The reader is referred to pp. 184.193 of Middleton (1960) for further
discussions of the crosscorrelation power spectra and the effect of filters.

The problem of practical computation of cross-power spectra and the
"accuracy of these calculations is considered by Goodman (1957). The neces-
sary numerical tables are presented by Alexander and Vok (1963). Numerous
papers on multidimensional time series were presented at a Symposium edited
by Rosenblatt (1963).

t•,,• • l -, - ...•
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APPENDIX 11.1

Evaluation of Equation (11.8)

By virtue of the definition, Eq. (11.18) and Eq. (11.17), one has

Dik(T) xj0t-Tr, X) Y,(TI)dT, f X(t +r-T2 , X)

0 - 0-

SYk(T 2 ) dT2  (Al ) 1)

0t - 0-

SYk~•) d• . (A11.1)

Now, if the set of functions {xjýt, X) I are stationary in the wide sense, one has

(xi(t-r 1 , X)Xk(t+r-T2, X ) Cik('+Tr-T2)

, so that Eq. (Al 1.1) becomes

Dlk(:) J Y0r0) Yk(T2) Clk(r+•l-r 2 ) dT1 dT2
0- 0-

Now

+00

I )k(T÷I-r-2) J Cik(J)e+i2rf(r+r7-r2) df

so that

D = ( +r)=!00k(f)e+i2wrfrdff Y('rI)e+12nfrT dT,

0- 0

|--
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00

J Yk(r 2) e-t 2 irfT2 d7-2

0-

It was pointed out -arlier that if the networks are physically realizable,
the functions Yj(T) and ),(r) vanish identically for r < 0 so the integrals may
be extended to -o without changing their values. In this case they become
Fourier transforms of Yi*(.) and Yk(O), respectively. Hence

+00

"Dik(r) = f jk(f) 'i*(f) Yk(f) e+t2wf df

-00

Finally one can take the transforms of both sides to give

Dik(f) = Yl*() Ck(f) Yk() (Al1.2)

It is left as an exercise for the reader to express this equation as a matrix
equation.,

¶1 Y I-__
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CHAPTER XII

Further Analyses of Three-Dimensional Arrays

12.1 Introduction

In the analyses presented in Chapter X it was assumed for simplicity
that the noise at each hydrophone is independent of the noise at the other
hydrophones. This assumption was made in order to simplify the analysis.
The discussion in Chapter XI prepares the reader for an extension to the im-

E portant case of noise fields which produce a correlation between the outputs
of the various hydrophones.

An analysis for the standard detector discussed in Sec. 10.3 has been
, •given by Rudnick (1960) for slightly different assumptions from those intro-

duced in Sec., 10.3., The major difference is that Rudnick considers the noise
signals at the hydrophones to be correlated so that he must introduce the cor-
relation matrix whose elements are given by Eq. (11.4)., On the other hand,
he assumes that the total noise power at each hydrophone is the same. Ai-

F though the analysis in Rudnick's paper is highly condensed, it is worth the
effort required to read it., He carried out a detailed analysis of a three-
dimensional array of 32 hydrophones and shows the deterioration caused by
sampling the time series and by clipping.

It seems more desirable to go on to the analysis of the circuits shown
in Figs. 10.1(d) and 10. i(e) rather than to reproduce the analysis of Rudnick.

12.2 Maximizing the Signal-to-Noise Ratio for an Array of Hydrophones

Mermoz (1964) has carried out the analysis of the filters that maximize
the signal-to-noise ratio for an additive array of M hydrophones as illustrated
in Fig. 10.1(d) or Fig. 12.1. He shows that significant improvementsmay be
obtained under some conditions when allowance is made for the correlation
between the noises at different elements. The following discussion follows
Mermoz rather closely.

It is not necessary to assume as before that the signals arrive as a plane
wave so that the signals received at the different hydrophones are the same
except for a displacement in time as stated in Eqs. (10.1) and (10.2). Instead
it will be assumed in the general analysis that a different known signal arrives
at each hydrophone. Later the analysis will be specialized to signals of identi-
cal shapes. The output of each hydrophone is subjected to a filter whose fre-
quency response is Pt as illustrated in Fig. 12.1.

218I
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x,(t) s,(t) + n,(t) A

,f ~ ~ ~ ~ X( x S(0) st+ n,(t) - A•f t)g t

xmlt)" sm(t) + nm(t)- YM(f)

Figure 12.1-A set of matched filters for a three-dimensional array of M hydrophones.

It is assumed that in the absence of noise the output of the summer is

M

I(t) Yi(r) s(t-r) dr (12.1)
i= 1 o-

while in the absence of the signal the output is

M•(t) --- Yj(r) ni(t-,r) d. (12.2)

Since the system is linear, the output m general iss(t) +) (t) which is the

function y(t) of Fig. 10. i(d). One is in a position now to formulate explicitly
the problem that will be solved. As in Sec. 7.2, letS be the maximum value
of I S(t) I considered as a function of time and let N 2 be the mean square
value of )(t). What are the properties of the M filters Yi(f) that will yield the
maximum value of S/N?

The quantity N 2 can be computed readily by processes which are by
now thoroughly familiar to the reader. One has

N 2 
= ()12(t)) K =njt-T) nk(t-ra)

\ilk=1 b- o-

_______________________
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i .... Y1(ri) Yk(r2)drz dr ;

It is assumed that the order of the ensemble average and of the summation
and integration can be interchanged to give

SN2 2 f (n-(t-ri) nk(t-T2)) Y10i") Yk('2) d71 di 2.

j=1 k=l 0- o-

If the noise process detected by the M hydrophones is stationary, one can
utilize Eq. (11.5) to write

N2 = , , 00 Cjk(rI-T 2 ) Y/(-) Yk(7 2)ddri dT2 .(12.3)
j=1 k=I o- o-

12.3 A Digression on the Properties of the Noise Output

-0
Equation (12.3) is of sufficient interest to justify a few comments be-

fore continuing the analysis. The quantity on the left is positive by definition
so the quantity on the right must be positive for a large class of functions
Yi (T). This imposes a serious restriction on the set of functions I Cik(T) I that
form the correlation matrix, It will be remembered that two conditions were
imposed on the functions Y,(f) in order that the filters be physically realizable.
The first of these was that Real Yj) be an even function off while im Y1(f)
"be an odd function off. This condition is fundamental, because if it were not
satisfied, the output of the fdter would not necessarily be real when the out-
put is real.

The second condition that was placed on the functions Y,(f) in order
that the filters be physically realizable is less restrictive in that it can be
weakened for the present purpose. This condition is that the Fourier trans-
form, Y,(r), of Y1(f) (j = 1, 2, .... M) must be identically zero for 7 < 0.
This condition is necessary for filters operating in "real" time in order to
have a logical sequence of cause and effect.. If YjAr) were nonzero for a nega-
tive value of r, an output signal would result before the input is applied.
However, there are many situations in which one does not filter in real time.
For example, if the data have been recorded completely before the filtering
operation is carried out, there is no reason why Y,(r) should vanish for nega-
tive r. In this case one may extend the lower limits of the integrals to .0*

Hence, one has the following important conclusion. A set of A12 real
functions {C~k(r)}, ], k 1, 2 ...... , can serve as a correlation matrix only
if the quantities

- a°B

E B " -. -
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At At +0 0

LC/k(ri-i2) Yl(T 1) Yk(r 2)dTi dr2
j =1 k=1 CI

are nonnegative for all functions Y,(r) which have Fourier transforms and for
which

r)= *(r) . (12.4)

The symmetry of this result would have been more striking if one had con-
sidered complex noises so that t7,k(ri-T2) were a complex function

It is possible to rearrange Eq. (12.3) so as to determine the power
spectrum associated with the iioise'r(t). The order of the integiations in Eq.
(12.3) may be changed to give

3t Al $

N,=' 7-• //,)-(Ti) Yk(-2 )Cjk(Tl-r2)dr drl I

A= 1 /=1 0-
(12.5)

The quantity in square brackets is the convolution of C',A(.) and )'A(-). The
integral can be extended formally to ic- if one wishes, since for the class of
realizable filters being considered, )'k(Yr2 ) vanishes for negative Tr. By virtue
of formula number (3) of Appendix 2. 1. one has

00 +00

"f YA(r2)CjA(r1-r 2 )dT2 = f jk(f) C )}k(f)e+I2.frldf.

.. (12.6)

I lence, after the order of integration is "gain changed. one has

i=1 A=I I fO-

The term i the square brackets is the complex conjugate of so one has

N2 f L lkOO•(.) ý10 k(] af (12.7)

Equation (11.13) shows that when the terms of the double sum are

grouped in pairs

I%-.~
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Gik(J) Y1*qf) Yk(f) + Ck,(f) YAPJ Y1{f)
the sum is real. There remains only the proof that the double summation in

r € Eq. (12.7) is nonnegative before one can conclude that
M M

Ck(Y) YkW(12.8)
L L
1=1 k=:.

is the power density of the noise 31(t). It was remarked immediately after Eq.
(11.15) that the proof of this assertion is given by Cramir (1940). Alternately,
one may use Eqs. (11.15)-(11.18) to make a direct calculation of the power
spectrum of the output of the summer. This calculation leads directly to the
result that PL(J) is the power density of 71(t) and, hence, to the conclusion
that Pz(f) is nonnegative.

It should be remembered that the results of this section are valid for
any set of filters whether or net the filter responses maximize the output
signal-to-noise ratio.

12.4 The Filters that Maximize the Signal-to-Noise Ratio

The analysis developed in the following section is based on a paper by
Mermoz, and it represents a generalization to M dimensions of the procedure
"followed in Section 7.6. In the solution to the one dimensional problem, the
optimum filter described by Eq. (7.4) contained a factor exp(-21rmT) which
corresponds to a time delay in the input signal of amount T, Siwnce T7nay be
negative, one is at liberty to select an arbitrary time t, and ask what filter
yields a maximum value for I S(t) VN. One may rest assured that this is not a
restriction, since if the output were larger at another time t', the arbitrary time
delay T contained in the signal would have shifted the larger output from t'
to to. Further, if the response of each filter in Fig. 12.1 were changed by a
common real factor, there would be no change in the ratio IS(to)I/N Hence,
one may formulate the optimization problem by seeking those filters which
minimize N subject to the condition that S(to) remain constant. This latter
condition is essential for otherwise Y, - 0 would be the solution of the mini-
mization prble-

Consequently, one seeks a set of functions I Yj(T) 1, 0- < T <oc, j
1,2,..., M, such that

isamiCuk(Ts-ue 2) Y1t) Yk(T2) dTto t 2 (12.9)
/=I k=16- -

is a mininrum subject to the condition that
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S (to) = SY,r) si(to-T) dT (12.10)

is constant.
It is evident that the notation and, hence, the manipulations can be

simplified by introducing matrices. Let •, 'J and 2 denote one column ma-
trices defined by

SS2 Y2 •Z

S YM Z

1 and let Z, and 2be the one rowed, transposed matrices, respectively. Also
" ~let

/ Ci 
C ,12 . .,CIM •

C21 C22 C2M (12.12)SC= I\CV ... M

be the matrix of the correlation functions. The problem will be rephrased in
this simpler notation. One seeks a matrix !J such that

N2 = C 7- 1 (T)I(-T2 ) q4(r 2 )dTi d" 2  (12.13)

0- 0-

is a minimum subject to the condition that

CoO

S(t,) =J - (r)-(to.-r)dr (12.14)

0-

is constant.
If one has a solution iJ(r) of this problem, it is evident that a small per-

turbation of the solution of the form

*(T) ý'J(r) + a4r), (12.15)

I ---

:.x
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"- where a is a scalar quantity, must not change the value of N'. Of course, the
new matrix S(') is subject to the restriction that

00I'€O- •(rOa(t°-7-) dr 0 (12.16)

This equation asserts, in a manner of speaking, that the matrix functions (t,-7)
and Z,() are orthogonal.

If one substitutes Eq. (12.15) iro Eq. (12.13) and evaluates the

condition

aN 2  0

Ta Ia=O

which is a necessary condition if N 2 has a minimum, one finds that the
equation

f [f[(r1 )C(r)1-T2 r2) + (r,)Cri-rJ)"(r 2)I dir, dTr 2 = 0

must be satisfied.
The second term in the integrand of Eq. (12.17) is a IX 1 matrix a~id is,

therefore,equal to its own transpose. Further, the transpose of a matrix prod-
uct is the product of the transposes written in reverse order, Hence one has

Sol V(r -T2 )•J(T 2) = S(rTI r -72)P(r72 ) = 'b(rT2)C(T1-r 2)S7r,).

One can make the interchange of the integration variables r Land T2 without
changir~g the value of the integral. This change leads to ('(r2-rl) for the
central factor, but by virtue of Eq. (11.6) one has

((r-1) = (•'(01-72) .(12.18)

One sees that the integral of the second term in Eq. (12.17) is the same as the
integral of the first term.

Hence, the necessary condition on 'J and Z is

fJf T(ri)Q(71 -7 2 )r(T 2 )dr• d• 2  0 _ (12.19)

0- 0-

V

|N
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This equation can be made formally more simple by introducing a new matrix
function '(T 2 ) defined by

T•(T2) f JNTIV01r )~r-72)&dr , (12.20)

0-

so that Eq. (12.19) becomes
00

() = 0 (12.21)

0-

At the same time one has the condition, Eq. (12.16)

j 00

-:• f S .(i),(t0-T)dT=0 . (12.16)

These two equations are consistent when one assumes

I(r) = KA,(to-r) • (12.22)

The reader should notice the similarity between Eqs. (12.14) and
(12.12) on the one hand, and Eq. (7.11) on the other. The presence of a noise
matrix has led one to replace the matrix of filter responsesJ(-) by a new matrix
,.(.) but the elements of the new matrix are proportional to sJQ) with the time
scale reversed. This same behavio:a was found in the one dimensional case.

A solution of Eq., (12.16) can be obtained as follows. Since it has been
assumed that the wave forms s,(-) are known, one can select two times Ta
and Tb such that Ta 0 Tb, Si(to-Ta)# 0, and s(to-Tb) * 0 i*= 1, 2 ..... M but
which are otherwise arbitrary. The functions Z(zr) which are the elements of
Swill be defined as

ZI(r) = 8(7-Ta) -
6 (T-Tb) (12.23)

s5(to-Ta) sV(to-Tb)

It is readily seen that these functions satisfy Eq. (1 2.16). When they are sub-
stituted into Eq. (12.21), one finds that this equation is satisfied too when

'()is defined by Eq. (12.22). Unfortunately, the goal of the analysis is not
the matrix I(T) but the matrix !J(T)

When the matrix '((T) is eliminated from Eqs. (12.20) and (12.22), one
obtains the following integral equation for the unknown 'J(T),

iI

" I
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f (r,)C(rj-r2)drT =K2•(t0 -r 2) . (12.24)

*1 0-

Now, the elements of 'i(rl ) are the impulsive responses of realizable fidters so
the lower limit of the integration can be extended to -cc without changing the
value of the integral. Since the resulting integral is a convolution, one realizes
that the integral equation can be changed to an algebraic equation by taking

the Fourier transform of the equation. First, however, it is convenient to take
the transpose of the equation and make use of Eq. (12.18). This gives

S[ (T2-rl)b•(Tt) dr =K •t-00-2) ,(12.25)

-0-

the resulting Fourier transform of which is

e(J)~i~j K e- 1e2 rfto (ýf

= K eC- 2 frto*() . (12.26)

These new matrices are defined by setting their elements equal to the Fourier
transforms of the elements of the corresponding matrices with time arguments.
An obvious check on this analysis is to note that in the case M = 1, Eq. (1 2.26)

reduces to Eq. (7.4) as it should.
As in the one-dimensional case, one is led to an arbitrary constant K in

the filter responses. This means of course that one can increase the gain with-
out limit and thereby increase the output sibnal to any desired value. Need-
less to say, however, the noise is amplified equally so there is no change in the
signel-to-noise ratio. This point can be illustrated more formally as follows.

Let k be the maximum value of the signal, i.e., from Eq. (12.14)

0

k - t.), = f (r2) -(to-r2) dr•. (12.27)

Multiply thiis equation by K and utilize Eq. (12.25) to give

kcK -- f TJ(r 2)C(r 2-rT)'21J(ri)dri dr2

0~- 0-

.-
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When the simple change of variables (rT 72) - (r2, rl) is introduced, the right
member becomes N2 by virtue of Eq. (12.13). By definition k is the maxi-
mum value of the signal so

-k (12.28)

as stated above.
Although the complete solution of our problem is implicit in Eq. (12.26),

it is desirable to solve this set of equations explicitly for ýJ(). If the matrix
@J) has a nonvanishing determinant A(J), there exists an inverse matrix whose
transpose is

""w- jAtk k(O (12.29)

where Mjk(J) is the cofactor of the element (j,k) in the determinant A(f).
If one foregoes the matrix notation, the solution of Eq. (12.26) may be

written

Ke-i2nft° M k(fliT. (12.30)
]=i

This completes the formal solution for the design of the M filters when the
shape of the signal and the noise matrix are known. It is left as an exercise
for the reader to show that these filters satisfy the important conditions
Yk(-) = Yk*(t), k = 1,2 ... M.

It has already been assumed that AY) does not vanish for real f. Since
A(-j) = A((), one concludes from Eq. (12.30) that A() must not vanish for
any complex value of f because otherwise the filter would yield an output
befoic the input is applied.

12.5 Special Properties of the Output of the Optimum Filters

If one prefers to express Eq. (12.30) in matrix form, then as seen from
Eq. (12.27), it is better to express the transpose of qJ(t). Hence, using Eq.
(12.29), one finds

SO •t = Ke-t.r 2 *0f t,-, a'..)C (12.31)

Suppose now that this equation is multiplied on the right by the matrix

§ - -
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af)e~i2 1rfto

and the resulting equation is integrated with respect to f from -0 to +-0. The
integral on the left is the matrix form of Eq. (12.10) so one has

S(to) = K (12.32)

-00

The left member of this equation has already been defined in Eq. (12.27)
as k and Eq. (12.28) shows that k/K is equal .) (S/N)2 . Hence, one has the
following compact form for the signal-to-noise ratio for the optimum detector.

+00

0N mii -00
where

D0 v C *(w I S(f) . (12.34)

The function b() has an interesting and suggestive relationship to the
spectrum of the output S (t) when the inputs to the optimum filters are the

signals alone. Since S (t) is the sum of the outputs of the individual filters,
the Fourier transform of the output is the sum of the Fourier transforms of
the outputs of the individual filters. Hence,

but, by Eq. (12.31), one has

S~f Ke-t2 Yfto *(C;6' ~ j

Introducing Eq. (12.34), one finds

•(1) = Ke-t21ftoD(() . (12.35)

One notices that in the special case K 1, to= 0, the spectrum of the output
isb0f.

It has just been shown that when the set of M filter responses i(T) has
been designed to yield a maximum signal-to-noise ratio, the spectrum of the
output when signals alone are present is related to the function 5(t) by Eq.
(12.35). It will now be shown that when noise only is present at the inputs,

---- I I ---'-
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the spectrum of the output is proportional to0b(f). Furthe- :'K = I and t, = 0,
the spectrum of the output when signals alone are present is identical to the
spectrum of the output when noise only is present at the output. The result
was encountered in the case of one channel, Sec. 7.4, and the explanation
offered there is still applicable.

It was shown in Eq. (12.8) and the following discussion that when cor-
related nu: e inputs are applied to a set of M filters the sum of the M outputs
has a power P?(f) which may be expressed in matrix notation as

P',.(.) = *.w(ikt • (12.36)

Although this result is valid for any filter responses, the immediate interest is
n the set of filter responses given by Eq. (12.31). When Eq. (12.31) is sub-
stituted into Eq. (12.36), one finds

'X = K2' (&t9-' 0t) 09- *()

Now M- is the identity matrix and may be omitted. Further, fl, is real so
one may take the complex conjugate without changing the value. Thus

or, using Eq. (12.34),

SP, f) = K2 (f) (12.37)

as stated above.
One is now in a position to discuss the magnitude and sign of the out-

put S (to) when the input is signal alone. From Eq. (12.35) one can show
readily that

+00 +W

5(t) y) e+127rft d= K b(f)et27f(tt0o)df,_ (12.38)

- 00

and

+00

K b() df . (12.39)

-00

Now/b(f) is a nonnegative function so the sign of S(to) is the same as that of
K which may be co'nsidered positive without loss of generality. If one takes
the absolute value of Eq. (12.38), , .e has

L2_" ,_ .... . --. ~ -_.,

---- --. ~-~-~ .~I -
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+00 +00

QS~)lKf rDbj DlfdfS=t) (12.40)

- The second step is valid since D(f) is nonnegative as shown by Eq. (12.37).
One sees that there is no value of the time for which S (t) is larger in magnitude
than 8(to). Further 8(t) is symmetric about the point t = to since D(f) is an
even function off! This symmetry property is also true in the case of a single
channel.

Equation (12.29) and many that follow it have a factor A(f) in the de-
nominator., This was justified by the assumption that A(t) does not ý anish,
but it would be wise to inquire more closely into the validity of this assump-
tion. There are two situations of interest which lead to the vanishing of the
determinant A(f) Fiist, if the noise at the output of any single hydrophone,
say the ith hydrophone, vanishes, then Cik(f) = 0 for all values of k and A(f)

0= . In this case one would use the 1th hydrophone alone in the detection
process. Secondly, if thz noise at two different hydrophones, say theith and
the kth hydrophones, differ only in amplitude and a constant time displace-
ment, then C 11 ) = constant x Ckl(]) for all values of I and the determinant
,anishes. These conditions are rather artificial and it seems better to con-
sider the singular case A(C) = 0 as an approximation to exceptionally quiet
conditions. This point will be returned to later.

12.6 Special Cases for the Input Signals and Noise

In the preceding sections the general problem of designing a set of
matched filters for M hydrophones was considered. The solution to the prob-
lem of designing these filters to maximize signal-to-noise ratio was given in
Eqs. (12.30) or (12.31) in the form of a complex frequency response for each

filter. Further insight into the properties of this solution can be obtained by
restricting the generality of the problem.

For the first illustration suppose that the M input noises n,(t) (sees Fig.
12.1) are independent of each other so that the correlation functions Clk(-)
vanish unlessj= k. In this case the set of Eqs. (12.36) becomes a simple set of
M equations each of which contains evly one unknown, and the desired filter
responses can be written down immediately. They are

YkP ) = Ke-i2 1rfto ?k*(f) (12.41)

Of course this result could have been obtained equally well from Eq. (12.30).
If the determinant A(t) has nonvanishing elements only on the main diagonal,

- W
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the cofactorsMik(I) vanish unlessj = k. If] = k, Mkk(f) is simply A(f)ICkk(f).
Thus in the case of independent noise inputs each filter is designed as though
there was only one channel present.

When the input noises are uncorrelated and the filters are designed by
Eq. (12.41), the signal-to-noise ratio given by Eq. (12.33) becomes

M +0

(52f (12.42)
k=1 - kkUf)

If it be further assumed that the noise spectra are constant and each equal to
W, over the frequency band of the signal, one has the simpler formula

M +00

2( f) I I k(j) 12 df. (12.43)"N WO• k= o

The sum over k yields the total energy in all the signals, while the fa-tor W,
is a constant that does not change with M. The improvement that is obtidned
while the number of hydrophones is increased is apparent.

Suppose that the generality of the noise processes is restored but that
restrictions on the M signals sk(t) are introduced. In the case that is of most
interest the M hydrophones will detect the arrival of a plane wave. If each
hydrophone is omnidirectional, one can say that, to a first approximation,
each signal sk(t) is identical to all other signals except for a translation in time.
Actually, the signal received at any hydrophone will be distorted by the waves
diffracted from nearby objects including the M- 1 other hydrophones. One
may argue either that such distortion is negligible or that it can be removed
by suitable inverse filters. In any case it will be assumed that the signals sk(')
received by the hydrophones have identical wave shapes but are translated in
time because of the differences in the travel paths from the source. In accord-
ance with the techniques of beam forming, an all-pass time delay network is
added to each input so that all of the wave forms are brought into coincidence.

These beam-forming techniques enable one to assume

sl~t) M s(t) , I = 1, 2 .... ,M. (12.44)

In this case one may express the filter responses given by Eq. (12.30) as the
product of the two factors

K e-i 2nfto s*y) (12.45)

and

- ..t
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M

Mik(f) (12.46)
1=I

The first factor is independent of the noise and depends only on the signal
: ,s(t) whose detection is sought and the two arbitrary constants K, to. This is

the response of an optimum filter for a single channel when the background
noise has uniform density.

The second factor Pk(f) depends on the noise and not on the signal •f).
However, it should be remembered that the correlation coefficients Cik(.)
which are the elements of the determinant A(f) and the cofactors Mik(f) must
be calculated from the outputs of the all-pass delay lines rather than from the
outputs of the hydrophones. It might be noted that if the M noise components
are mutually uncorrelated before they enter the delay networks, the noise
components will still be uncorrelated at the outputs. The introduction of the
all-pass delay lines will not introduce a correlation.

The summation over i in Eq. (12.46) is equal to the value of theM X M
determinant which can be obtained from A(f) by replacing all the elements in
theith column by one. The effect of the filtershk(0) is to whiten and balance
the noise components so that one can process the output of the summer withS~the single filter, Eq. (12.45), which is suitable for white noise.

The separation of the filter given by Eqs. (12.45) and (12.46) may be
used to rearrange the circuit of Fig. 12.1 to that sliown in Fig. 12.2. Mermoz
(1964) designates that part of the circuit enclosed by dashed lines as the
proper filter of the array. He also defines the gain of this proper filter and
demonstrates that it has many interesting properties.

It has been suggested occasionally in the literature that the following
design procedure is adequate when the M signals sk(t) are identical in shape.
After the beam shape is formed by introducing suitable time delays in each
channel one can form a linear sum of the M channels and pass this sum through
a matched filter designed for the signal's wave shape. One can now specify
the circumstances under which this procedure is acceptable. It is evident that
the identity of the signal wave shapes is not sufficient since Eq. (12.46) ie-
quires a different filter for each channel. The further assumption of uncorre-
lated noise components is not sufficient since in this case although the func-
tions bk(f) defined in Eq. (12.46) reduce to [Ckk(),- as in Eq. (12.41),
they still may differ from channel to channel. It is only when the M noise
components are mutually independent and have identical power spectra, i.e.,
Ckk(f) = WO(), k = 1, 2, 3,. M, that one can justifiably sum the outputs
of the M delay lines and introduce a single matched filter. It is evident that
this procedure will give optimum performance only under highly specialized
conditions.

U a -
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12.7 The Likelihood-Ratio Receiver

The receiver shown in block diagram in Fig. 10.1(e) is commonly re-
ferred to as a likelihood-ratio receiver, but so far as the writer is aware, no one

-. ,f has attempted to construct an operational receiver of this kind. An extensive
analysis of the theory of this detector has been presented by Bryn (1962) to
which the reader is referred. The analytic approach followed by Bryn illus-
trates many of the concepts developed in the present work. First, he selects a
finite time sample of the data and represents it as a Fourier series as in Eq.
(4.27). Next, he utilizes the assumption set forth just before Eq. (4.35),
namely, that the Fourier coefficients of each series are independent gaussian
random variables. Finally, Bryn assumes that the noise spectra have a finite
bandwidth so that the number of Fourier coefficients required is finite. In this
manner it is argued that the sample of data can be characterized by a finite
number of gaussian variables and that the probability density of each sample
may be written in the form of Eq. (3.29). Actually, as Bryn points out, a cor-
related gaussian probability density is applicable to the Fourier coefficients at
any one frequency component, and the joint probability density for all com-
ponents is the product of the probability densities for each frequency.,

Bryn writes the likelihood ratio as in Eq. (8.28) with p = q = 1/2, and
the probability densities of the message with and without noise are obtained
as in Eqs. (8.31) and (8.32). The expression for the likelihood ratio is ex-
panded in a power series in terms of the signal components to terms of the
second order as required for incoherent detection. This extremely brief out-

• .,line indicates the general approach used by Bryn to determine the structure of
the filters shown as boxes in Fig. 10.1(e).

It is of interest to note that the final design contains a filter whose am-
plitude response is

(12.47)

where 8 (f) and7l (f) are the power spectra of the signal and the noise, respec-
tively., This formula is of interest since it has a close resemblance to Eq. (7.4)
which was derived for the case of a signal of known shape. The important dif-
ference is that in Eq. (7.4) the phase structure of the known signal is utilized
in the detection process whereas in the present case the signal is noise and no
phase structure is available.

Bryn carries through the calculation of array gain for a linear array of
five hydrophones and a three-dimensional array of eight hydrophones. It
turns out that the detection process shows significant improvement over the
standard detector, Fig. 10.1(a), only when "X > linear dimensions of the
array." The reason offered for this improvement is that "at low frequencies

.t-
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* •the directivity pattern is superdirective." It will be argued below in Sec. 14.2
that the gain of a superdirective array is achieved only for distant noise sources
and that the gain may not be achieved when the noise source is only a few
wavelengths from the array.

In conclusion one can say that the results of Bryn's analysis suggest that
the performance of the likelihood-ratio receiver does not justify the complexity
of its design and construction.

12.8 Suggestions for Further Reading

Although the paper by Mermoz (1964) has been summarized in some de-
tail, there remains much more material in his paper that is well worth reading.
The papers by Rudnick (1960) and Bryn (1962) are highly condensed but
they will repay the reader the large amount of work necessary to read them
carefully. Shor (1966) has analyzed a variation of Mermoz's method that re--, quires the computation of a smaller number of correlation coefficients. The
paper contains an example of the design of an array of 23 hydrophones. The
problem of the optimum receiver structure for an acoustic array has been
considered from a vi~cpoint more fundamental than that of the present dis-
cussion by Middleton and Groginsky (1965).

In the analyses presented in Chapters X and XII it is assumed in every
case that the noise is gaussian. Middleton (1962, 1964) has extended the
analysis of a few deiectors to include a mixture of gaussian noise and non-
gaussian noise due to impulses. He develops formulas to show the degradation
of performance resulting from the non-gaussian noise.

The reader should not neglect the papers that describe experimental
embodiments of the theor-es such as Anderson (1960) and Allen and Wester-
field ( 964). Anderson (1958) has discussed the response of three-dimensional
arrays similar to those considered by Rudnick and Bryn.

* *t



CHAPTER XIII

The Likelihood Ratio and the Likelihuod Function

13.1 The Comparison of Different Detection Systems

Analyses of several detection systems have been presented in Chapters
VII, X, and XII. The reader probably has experienced a sense of dissatisfaction
since a uniform, set of hypotheses regarding the nature of the signal and noise

and a uniform criterion of performance were not maintained throughout the
analyses. Part of this difficulty is real, stnce the analyses become more compli-
cated as the statistical assumptions become more realistic. On the other hand,
the underlying hypotheses regarding the statistics of the noise and signal were
sometimes changed so that each of the analyses would be relatively simple.
This variability of hypotheses is desirable from a pedagogic point of viewalt
since it puts the physical concepts isito better view by minimizing the analytic
complications.

If one seeks to reo-Sdnize the ana'yses of the different systems into a
common framework, ihe generalized likelihood ratio' defitied in Eqs (7.47)
or (8.28) furnishes the best standpoint from which to conipare thv different

systems. The advantages of this point of view have already been illus•,ia.d
It was shown in Sec. 7.11 that under specialized assumptions regarding the
statistics of signal and noise the system which maximizes the signal-to-noise
ratio also maximizes the likelihood ratio. Similarly, in Sec. 8 4 it was shown
that under certain assumptions the standard detector of Fig. 10.1(a) (for the
case of one channel) maximizes the likelihood ratio.

These comments suggest the following generalizations for receivers de-
signed to make a decision between the two hypotheses Ho and HI. Fcr each
set of assumptions regarding the nature of the signal and noise there is a re-
ceiver which is optimum. Conversely, for each receiver there is a set of assump-
tions regarding the signal and noise for which this receiver is optimum. These
statements are not precise enough as they stand to admit of proof and so they
are offered as guides to one's thinking rather than as mathematical theorems.
However, if one follows the spirit of the Bayes system and establishes an
average risk as in Eq. (8.8), it should be possible to establish the truth or false-

ness of these proposed theorems.

It is asumed that when there is no a pnon information regarding the presence of a sig-

nal, one w•s p = q = '/. In this case the generalized likelihood ratio reduces to the more
speciallied definition of I.q. (7.46).

236

I

* '.



SEC 13 2 THE LIKELIHOOD RATIO AND 'iHE LIKELIHOOD FUNCTION 237

As an example of one aspect of these rules, consider the case of a signal
obscured with additive gaussian noise., If one knows the shape and the phase
of the signal, then the optimum receiver will be the matched filter of Fig.
10.1(d). On the other hand, if the signal is a gaussian noise, one will use the
standard detector of Fig. 10.1(a).

The concept of generalized likelhood ratio does not provide a complete
thory of signal detection since it does not provide a value of the threshold,
Ro, to be used in the decision process. The receiver operating curves described
in Sec. 7.10 provide a graphic way of visualizing the performance of the re-
ceiver and they enable one to understand better the effect of the choice of a
threshold value, Qo, on !he performance of the receiver. The value of the
Bayes systems described in Sec. 8.2 is that they show how one can evaluate
objectively thie problem of selecting the threshold value. Unfortunately, the
cost function C0( 7) that was introduced in the development of the Bayes
system cannot be determined objectively.

It seems likely that the Bayes system provides the complete solution to
the problem of signal detection, and that the difficulty of determining the cost
function reflects the difficulty of assessing the best military tactics in a given
situation. This means that the concept of cost functions must be supplemented
by a consideration of the military situation. In other words, the tactical,
military situation in which the equipment will be operated must be simulated
in order to assess objectively the usefulness of a cost function. It is a common

J procedure to determine ROC curves experimentally by .ntroducmg known
noise and signals into the receiver. Consequently, the :nclusion of the tactical
situation and the cost function is a natural extension of the empirical tedts of
performance now used. Until experimental data of this type are available it

will be necessary to use one's judgement in selecting the cost functions. Of
all the statistical quantities discussed so far the probability of false alarm is
r.elated most closely to a military requirement that can be assessed objectively.
For example, if a ship has a patrol assignment that lasts, say, five weeks, there
is a limit to the number of target indications that can be investigated without
exhausting the ships' supplies and thereby aborting the mission. This in turn
places a limit on the number of false alarms investigated and, hence, on the
lower value of the threshold that can be used.

13.2 The Extraction of Signal Parameters in a Noise Background

The theory developed so far has been concerned primarily with signal
detection, As soon as the energy in the signal is large enough so that the
probability of successful detection is large, the operator will want to measure
some of the characteristics of the signal such as bearing and, in the case of
active sonar, range and doppler. In more sophisticated systems the designer
will try to provide some form of classification. In the case of passive listening

- . .- 4-
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it is sometimes possible to make some classification of the source on the basis
of spectral properties of the received noise. In the case of active systems one1- " may be able to infer properties of the target from the shape of the returned
echo. For example, as mentioned earlier, the finite length of the target will
elongate the echo and distributed points of strong reflection may produce a
characteristic modulation of the envelope of the echo. The present discussion
will be restricted to a brief indication of the theory on which the extraction
of signial parameters is based.

Let us follow the notation of Eq. (8.1) and write

S= + (Vf) (13.1)

where the functional dependence of• on a set of parameters 1 (= 0, 02, ....
OK) is made explicit., In order to simplify the discussion suppose that-# has
only one component 0 and that an estimate of the "best" value of 0 is sought.
The English mathematician, R. A. Fisher, introduced the method of maximum
likelihood (see Cram6r, 1946, Chap. 33) as a general approach to this problem.
In brief, for each possible value of the parameter 0 the probability of obtain-
ing the observed value V ( , V 2, V .... , VM) is calculated. This probability
density is called the likelittood function of the sample and will be denoted
L(r 10). For a given sample 1 of the message L(-) is defined as a function of
the parameter 0, The method of maximum likelihood asserts that the "best"
value of 0 is that value wh,ch maximizes L(P 10) or, equivalently, In L(V 10).
Thus one uses the equation

In L(17 10) = 0 (13.2)

to define 0 as an implicit function of P. If this equation has a solution 0
constant, this solution will be ignored and only the solution

0 = 0e(o) (13.3)

which depends on the message V will be accepted. This value is called the
maximum likelihood estimate, 0 e, of 0.:

If prior knowledge of the probability density of 0 is available, the func-
tionL(r 10) should be multiplied by this probability density before the maxi-
mization is carried out. More commonly it is assumed that the random pa-
rameter., say range, bearing, or doppler shift, is restricted to a range of values

and that the probability density of the parameter is constant in this range.
The estimate, 0e(i), of 0 defined in Eq. (13.3) is a random variable

since it is defined as a function of the random variable V. Therefore it has an
expected value and a standard deviation defined by

%a
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d(0e )=E{Oe (. ) ) (13.4)

S• andIr a 2 (0e) -- I• 0E -0e ) . (1.5.)

Theorems regarding the existence of a solution 0e(M of Eq. (13.2), and the

properties of 0 e and 02(0e) are given by Cramnr (1946, Chapters 32 and 33)
to whom the reader is referred. The present discussion is based on the assump-
tion that Eqs. (13.2) and (13.3) provide a practical solution to the problem of
parameter estimation.

As an example of this method suppose that the distance to a fixed target

is obtained by measuring the two-way travel time 0 of an acoustic pulse, and
the distance d will be calculated from the formula d = 0/2c. A set of M values
01, 02 . ... 0 M are observed but they are not necessarily the same because
of small random variations in the medium and the equipment. If the causes
of these variations are small but numerous, one may assume with some justi-
fication that each observation 0i is governed by a gaussian probability density;S~i.e.,

p( -A--exp ' L (Oi-O)"] (13.6)p(Oi) = ,•o Pl2o"(1)1,(36

where 0 is the "true" value of the travel tune. If, further, the M observations
are spaced in time so that they are a0! independent variables, the probability
density for the set of values (0 i, 02, . ... Og) is the product of the M proba-
bility densities like Eq. (13.6). In this case the likelihood function becomes

M

L(O1, 0 2 . - M 10)= exp -L (0,-0)2 . (13.7)
(27TW1I OM 202

A brief calculation shows that Eq. (13.2) becomes

L (Oi -O) = (1.8

and the maximm likelihood estimates, Eq. (13.3) is

M
0 Oe (O,) = mL Oi (13.9)

# ,.' p ...
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In this simple case the best estimate is the arithmetic mean as one would
expect.

13.3 The Determination of the Amplitude
of a Coherent Signal Obscured by Noise

Let us return to the example discussed in Sec. 7.11 and assume that the
signal vector 9 is known except for a common factor. Thus it is assumed that

Sn = as, , n=l,2_ ... , M, (13.10)

where the s, are known but ao is a random variable whose probability is un-
known. When this signal is obscured by the gaussian noise described in Eq.
(7.62), the conditional probability of obtaining the message "r is

MI

[-lani/ Al

L(i Iao)= a exp amn(Vm-ao 2m)(Vn-aosn
(2iryM2  Cf

L m,n=
•: ..... (13.11)B{

This is the likelihood function introduced by Fisher, and the optimum choice
of a, is that value which maximizes L(P I a,) for the given message _. The
max,mization can be obtained more easily by the equivalent process of maxi-
"mizing in L(P I a,). A brief calculation shows that the equation

a 11n L(V l ao)l / aa = 0 (13.12)

yields

a,* Zamit Vm sn (13.13)
lam , Sm Sn

where the summations extend from I to M on both indices. The asterisk is

added to show that this is the estimated value and not necessarily the correct
value, a,.,

The estimated value, a,*, of ao provided by Eq. (13.13) is a function
ao*(!) of tha message P, and, consequently, a,* is a random variable. An
estimate of this kind is said to be unbiased when the expected value E'j I a,
Iao*I averaged over all possible messages V is equal to a0 . In terms of a for-
mula, the estimate a,* is said to be unbiased if

E' lao {ao*} = f a.*( af( a)dr-a. (13.14)

%I
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where f(l I a,) is the probability density of the message JP given the true value
a, and F is the message space. A brief calculation will show that the value of
ao* defined by Eq. (1- 13) satisfies Eq. (13.14) when the probability density
f(l • ao) is given by Eq. 7 62) with Nm1 replaced by V, - ao sm, m = 1, 2,

PROBLEMS

13.1 Suppose that a random variable x is governed by a gaussian distribution
whose mean is zero and whose standard deviation is o. A set of M independent
observations of the variable x yield the values xI, x 2, . .. , xM. Use the
method of maximum likelihood to show that the best value of the standard
deviation is given by a2 

=

M

L(/M)L xi2

13.2 Show that the estimate of U2 obtained in problem 13.1 ih unbiased.
Hint. It is assumed as prior knowledge in problems 1 and 2 that the mean is
zero.

13.3 Prove that the value of a,* defined in Eq. (13.13) satisfies Eq. (13.14)
when the noise samples have a gaussian distribution.

13.4 Read Chapter 34 of the book by Cramer (1946) and write an expository
essay on the bias and the efficiency of the -stimate of a parameter,

'¢-- ~~-



CHAPTER XIV

Planar Acoustic Arrays

14.1 Introduction

The acoustic arrays analyzed in Chapters IX, X, XII were composed of
omnidirectional point sources. In a sense these are the most general configura-
tions possible, and any configuration of sources may be considered as a spe-
cific arrangement of these general point sources. Actually, the transition from
"a finite number of discrete sources to a continuum of sources is difficult to
carry out mathematically, so it is easier to develop from first principles the
equations governing the radiation patterns of continuous radiators of finite

:• size. The present chapter has two limited goals. In the first place the relation
between Fourier integrals and radiation patterns will be developed. This re-
sult will be of interest in view of the dominant role that the Fourier integral

has played in this book, In addition, many authors start with Eqs. (14.11)
and (14.12) so that the present account will serve as a preparation for the
reading of many papers in the scientific literature.,

The second goal of the present chapter is the presentation of a brief in-
"troduction to the techniques of using multiplication as a method of increasing
angular resolution. Significant improvement in this respect has been achieved
for isolated, monochromatic signals.

14.2 Radiation Patterns as Fourier Transforms

Suppose that one has a series of transducer elements located in the x'y'-

plane and that any area element dx'dy' located at Q contributes to the field
pressure at a point P(x,y,z) an amount

pn(X ',y
dp = e-ikR+iwt dx'dy' (14.1)

where po(x',y') is a complex function which depends on the amplitude and
phase of the transducer motion at the point (xy'). R = R(P,Q) is the distance
from the source point Q to the field point P, and k = 2r/fX. As usual wo is the
angular frequency of the source.

The next step ii, .e conventional argument is to integrate Eq. (14.1)
over all values of x', y' * get the total pressure at the field point. This gives

242
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P( =) (P,") e-ikR(P,Q) + iwt dX'dy'

,. (14.2)

One notices in Eq. (14.1) that it has been tacitly assumed that the source
element is omnidirectioial and undisturbed by the presence of the other radia-
tors. Alternately, one caa justify Eq. (14.1) by restricting the field point P to
pointsz > 0 and say that Eq. (14.1) is the pressure field due to a source located
on an infinite, rigid baffle. In addition to the assumption about baffles, it is
generally assumed in radiation theory that the motion of each element of the
transducer is not influenced by the other elements. This last assumption is
not always realistic for experimental transducers. Since a consideration of this
feature of real transducers will lead the discussion away from the present goal,
it is noted for completeness only..

Assume that there is a finite number E such that po(x',y') vanishes
identically for all points Q such that x'P + y'2 > V. If one then restricts the
discussion to field points P for which R •> E, one can apply the customary
Fraunhofer far-field approximation,

R ý- r - Rx' - my', (14.3)

where

r = distanceO
R = cosine of the angle between 5P and the x'-axis
tm = cosine of the angle between O*' and the y'-axis.

It is also assumed in the Fraunhofer theory that the R in the denominator of
the integrand in Eq. (14.2) may be treated as a constant equal to r, Hence,
one has for the far-field,

+00
ef-ikr+•t •

p(x,y,z) = , Po(xy')e') dx'dy'

-00

(14.4)

which may be interpreted as a spherical wave front radiating from the origin
which is modified by a directional pattern given by the integral on the right.

!X
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he integral depends on the coordinate (xy,z) of the field point P through

the direction cosines 9, .
Define a function

+00

Fo(kH, kmi) = f po(x',y') e+ik(Qx'+my') dc'dy' , (14.5)

and introduce the assumption that

po(X',y') pl(x')p2 (y') • (14.6)

This restriction is not as serious as it might appear at first. When Eq. (14.6)

is introduced into Eq. (14.5), one obtains

Fo(kR, kin) = F• (k) rF2(km) (14.7)

with

+00

F1 (H) f J (X')e+ik9-c dx' (14.8)

-00

and similarly for F2(km).
There is no need to make any further simplifying assumptions but it

should be noted that the full nature of the function F, (k0) can be understood

"by restricting the field point P to the x,z-plane. In this case

sin 
(14.9)

where 0 is the angle between the z-axis, i.e., the normal to the x', y'-plane,

and the line 6P'. One recognizes Eq. (14.8) as one member of a Fourier trans-

form pair., In ordei to enhance the similarity with the previous notation, set

s sin 0

F1 (kX) p1 (s)

so that Eq. (14.8) may be written as

+00

pI(s) f ^, •(u) e+i2 ffsu du (14.11)

-I.
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with the inverse transforms

+00

pl(u) f pI(s) e-u 2 rsu ds . (14.12)
00

"When one compares Eq. (14.11) with Eq. (14.4), one sees that the func-
tion pl(s) has a simple physical interpretation. For the range of values-1 < s
< +1, pl(s) is the radiation pattern in the x,y-plane for source distributions
that can be factored as in Eq. (14.6). The ambiguity in the inverse equation
0 = sin-' s can be eliminated if one assumes that the source is located on an in-

finite, rigid baffle.

This elementary analysis has been given in some detail for several rea-
sons. First, and foremost, the Fourier transforms provide a valuable tool for
analyzing pattern formation (Spencer, 1946), and they show clearly the rela-
tion between source size and pattern beam width. Further, many authors
have stated Eq. (14.11) and (14.12) without showing clearly the circumstances
under which they are valid.,

The discussion in Sec. 2.3 has shown that if the source is of finite size
so that

(u) =_ 0, 1u I>E/X (14.13)

the function pI (s) must be nonvanishmng for large real values of s, in particular
for I s I> 1. This can be explained mathematically by saying that the wave
radiates at a complex angle ±-(r/2) + i 2 since

sin(±-r/2 + t ) = -cosh . (14.14)

The physical meaning of these complex angles can be understood when one
remembers that the three direction cosines 2, m, n of the field point P must
satisfy

2 + m2 +n2 =1.

Hence, if V2 is greater than one, that is ifs2 >1, one or both of the values m
or n must be imaginar'. This leads to waves which are attenuated in the y-
and/or z-direction. These waves, which do not contribute to the far-field, are
sometimes called evanescent waves.

The preceding discussion has been phrased entirely for radiation, but by
appealing to the principle of reciprocity, one can interpret the directivity
patterns as receiving patterns. However, one normally measures patterns for
plane waves which have real values for the direction cosines (Q,rmn). Thus, in

4, , ,~
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the previous example, one would measure P l(s) only for the range -I • S • +1,
yet this is considered a complete measurement of the radiation pattern. Simi-
larly, the directivity indices for transducers are defined in terms of integrals
over real angles of propagation only., One is now in a position to understand
the performance and the limitations of the superdirective array.

lie If the array has finite size so that Eq (14.13) is satisfied, Eq. (14.11)
becomes

+E/A

pi(S) = J p,(u) e+12 #su du (14.15)

It is possible to choose pO(u), I u I < E/X, so that p (s) approximates a pre-
scribed radiation pattern for I s I < 1, Thus one can determine a source distri- I'
bution for a transducer of finite size, i.e., not larger than 2E, such that the
radiation pattern will have a major lobe width as small as desired and such that
the heights of the minor lobes are below some arbitrarily chosen level. A
"source designed to fit these characteristics is often referred to as a superdirec-
tive array. Unfortunately, this approach to the design of a transducer places
no bound on the response p I(s) for is I > 1.

The possibility that p, (s) may have large values for s > I is not serious
as long as the discussion is restricted to plane waves from distant sources. Fre-
quently, however, the signals that one wishes to detect are masked by local
sources, such as the ship's self-noise, which may produce evanescent waves of
significant amplitude. For these reasons it is recommended that the directivity

index of a transducer should be redefined to include the response to evanes-
ant waves.

As long as the design is restricted to modest, "well behaved" source
distributions, the pair of Eqs. (14.11) and (14.12) offer a lucid explanation of
the well-known "trade off" between transduce length and major lobe width.

14.3 Achievement of Increased Directionality by Multiplication

There are two methods by means of which one can obtain major lobe
sharpening. It will be shown that if the signals are pure tones one can obtain
a sharpening of the major lobe by multiplication. This sharpening of the major
lobe does not require any r rocessing in time such as averaging, and therefore, it
is not the same process of multiplication discussed in Sec. 9.2 where it was
shown that directivity could be bought at the expense of processing time
when the signal was a broad-band noise..

As a simple example of a multiplicative array consider a rectangle of
length L in the x direction which is cut in two equal parts, -L/2 < x' < 0 and
0 < x' < +L12. Suppose further that there is no shading. One can utilize the

E * -
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principle of reciprocity and utilize Eq. (14.8) to write down an expression for
the responses of the right and left halves to waves arriving in the plane y 0.
One has

L/2 +L/4

FR(kk) = I e+ikQxdx' = e+ikL/4 f e+ikQU du

0 +L/4

FL(kQ) = f e+ikX' dx' e-ikL/4 f e+tkQu du

-L12 -L/4

where the subscripts R and L mean right and left halves, respectively.
These integrals can be evaluated readily to give

F R ( ) 2 2 si n- T L / e + ik 
9.L /4 + iw t

FL(kR) 2 [sin(k2L-4)] "L14 + iwt

After taking the real part of each expression one may multiply these
"together to obtain the output of the product array. When one uses the trigo-
nometric identity 2 cos(A + B)=cos (A + B) + cos (A - B), one finds

SFR (kQt) L(kQ) = 2 [ln~2L /"jI cos (kQL/2) + cos 2w•l,
L _kQJI

The second term in the braces can be removed with a low-pass filter.
On the other hand, if one had utilized the entire array as a detector and

formed the square of the real part of the output, one would have obtained
]2[ sin(kg.L2)12

IFRR+L(kQ)12 = 2  L 12)]2 (1 +cos 20t)

Again, the component of frequency 2wt can be removed with a low-pass filter.,
Figure 14.1 contains a plot of the normalized responses

RFR(kQ)RFL(k) [sin(.kQL/4) 12c
Nor L j cos(k/2)

and

t' -,-
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Figure 14.1-The normalized response of a standard receiver with hydrophoneof
length, L, and the normalized response (-) whcn the halves of this hydrophone are
multiplied together.

R+l, ]Nor= L sm(kQL/2Nor kvl./2 J

versus the dimensionless parameter kQl,/2. It should be noted that the nor-

malization hides the fact that the response for the entire line at zero angle,

Q = O,i s four times that of the multiplier. One sees from Fig. 14.1 that the

response of the multiplier has a sharper major lobe than that of the uniform
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line. The magnitude of the minor lobe is larger for the multiplier, but the
phase of the first minor lobe is negative independently of the phase of the

incident signal.
Welsby and tucker (1959) have pointed out that one might be tempted

, to infer that if the low-pass filter were followed by a half-wave rectifier, the
first minor lobe of the multipliec's pattern would be removed. They also point
out that this approach is impractical since the presence of noise will lead to the
generation of a dc output Nonetheless, their experience shows that the re-
sponse of a cathode ray tube to the acceleration potential leads to the desired
reduction of the first minor lobe, but this is an opinion that is not shared by
all workers in sonar.

The concept of multiplying the outputs of the two halves of a trans-
ducer is not really new. During World War II this effect was achieved under
the designation of a "sum and difference sonar." The sum of the outputs of
the two halves was squared and from this was subtracted the square of the
difference of the two outputs. That this is equivalent to the product can be

I., seen from the identity (x+y) 2 
- (x-y) 2 = 4xy.

14.4 Multiplicative Arrays with N Similar Hydrophones

It is interesting to extend the discussion of the last section to the case of
N identical transducers arranged in a linear array By virtue of the arguments
presented in Sec 14.2 the discussion will be restricted to the pattern in the
x,z-plane. It will be assumed that the n, elements on the left are connected
together as in Fig. 14.2 and the remaining n2(=N-n ) elements on the right
are connected together.

NORMAL
TO ARRAY DIRECTION 

OF INCIDENT
PLANE WAVE

1 T * T -T T

x(t) Iy(t)

(xt) y(t)

Figure 14.2-The formation of a multiplicative array from N(=n 1+n2 ) hydrolihones.

' I -
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It is a well known theorem in radiation patterns (Stratton, 1941, pp.
448-450) that the pattern of an array of identical transducer elements is the
product of the pattern of one elenrfat and the pattern of an array of omni-
directional point elements having the same array geometry., Hence, if one
denotes the noimalized pattern of one transducer element oy Do(O), the nor-
malized pattern associated with the output x(t) of the n elements on the left
is

Do(0) D I (p) (14.16)

where

s) n p (14.17)Dp)-n, sin p

and

p = (kdl/)sinO ; (14.18)

d is the distance between two adjacent transducer elements. Similarly, for the
n2 elements on the right the normalized pattern associated with the output
.Q( is 4

PD(0) D2 (P) (14.19)

where

D 2(p) = sn2 P (14.20)n2 stnp

Henceforth the common factor Do(O) will be omitted from the formulas.
If the incident wave is a plane wave arriving at an angle 0, the phases of

the two outputs x(t) and x(y) will differ by

'I kd1 sin 0 = (2dip/d) = qp , (14.21)

where d, is the distance between the acoustic centers of the two groups of
transducers. Consequently, one may write

X(t) sin ni p cos(&,t-_,+e) (14.22)
n, sin p

Ssin 1, 2 p
y(t) %/ 2 si cos(wt+e) . (14.23)n2 sin p

S3 9
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A common factor that includes Do(O), signal level, hydrophone sensitivity
and also two factors n, and n2 , the numbers of hydrophones, has beei
omitted. The phase angle e of the wave is not important when only one wave
is present. One may utilize the trigonometric identity 2 cos A cos B cos(A+B)
+ cos(A-B) to express the product x(t)y(t) as

/sinn, p\/ sinn 2 p\
x(t)y(t) = n1 s n2 sinp X

{ cos *' + cow(2wt+2e-*,)} (14.24)

The second term in the expression in braces may be rejected with a low-pass
filter. This gives, using Eq. (14.21),

-?t y (t) - sir/ n, p sin • p
i nx(t)y(t) inp ) cosqp (14.25).2 si 2 i

This result should be compared with the output when the system is

treated as a standard detector. This is

N (s•n p) (14.26)

When one compares Eqs. (14.25) and (14.26), it becomes obvious that the re-
ductior in the major lobe width results from the factor cos q p.

Welsby and Tucker (1959) present an interesting series of graphs of the
right member of Eq. (14.25) forN= 9 and various combinations of n, and n2
The first minor lobe is smallest for the combination n, 1 and n2 = 8, but it
can be shown that this is the worst combination when noise is present.

Since the factor cos *, = cos p q is important in the beam formation, it
is evident that the beam can be shifted slightly by introducing a time delay in
either the output x(t) or y(t) of Fig. 14.2. This is another advantage of the
multiplicativQ array. However, there will be a loss of signal level unless arrange-
ments are made to shift the phases of the outputs of each detector lement
simultaneously. Hence, if one wishes to obtain optimum beam shifting, one
must utilize the arrangement shown in Fig. 14.3

The present discussion is idealized in that only the response to a single,
monochromatic plane wave in the absence of noise has been considered.
Multiplication is a nonlinear operation so the analysis becomes noticeably
more complicated not only when noise is present but even if two or more
signals are present. The question of the resolution of two nearby sources with
a multiplicative array is a subject of controversy..

.. ...... 175
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25nr,..~ ~ OFAOUTC.4

X -ELAE I- DELAY X

RIGHT SHIFTED BEAM LEFT SHIFTED BEAM

Figure 14.3-The method of using delay lines to shift
J "the major lobe of a multiplicative array.,

14.5 Qualifying Comments on Multiplicative Arrays'

The subject of multiplicative arrays is relatively new so there does not
exist a large body of results upon which there is common agreement. Most
workers in the field of sonar technology have been thoroughly conditioned

to think in terms of directiornality patterns, and it is difficult for them to re-
member that not all systems can be judged reliably from a consideration of
their directivity patterns. This kind of bias is illustrated in the last section.
In systems that use simple linear addition a number of important properties

are interrelated in such a way that they can all be judged from the directional
response pattern, and this makes the response pattern a very simple and power-
ful criterion for the intercomparison of such systems.

Further, the relation between the power in the main lobe and the side
lobes in such systems is relatively insensitive to system changes, and thus the
width of the main lobe is a good measure of the processing gain. On the other
hand, the multiplicative arrays often have a large negative side lobe like that
shown in the solid curve of Fig. 14.1. It was argued in Sec, 14.3 that this lobe
could be eliminated in some manner since it was negative. This argument
about the response is valid only when the source is a single, plane wave. When
there are multiple sources, the large negative lobe adds to the fluctuations of
the output and thereby impairs the signal-to-noise level of the output.

In short, one must use great caution in comparing standard, additive
systems with multiplicative systems, and especially with systems having

Thi% iection I% the result of helpful and detailed Lomments of Dr I'. G Redgment. He
should not be blamed, however, for any error% or lack of appositeness in the diwcu,,,on.
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multiplication at more than one level, until extensive and specific analyses have
been made. The gain of the system and the ability to resc!ve multiple targets
in the presence of a noise background must be considered in considerable

detail.

14.6 Suggestions for Further Reading

A group at the University of Birmingham, Birmingham, England, work-
ing under the leadership of Professor Tucker, has made extensive studies, both
theoretical and experimental, of the behavior of multiplicative arrays to noise
and multiple targets. Of their many publications one might mention Tucker
(1955), Welsby and Tucker (1959), and Shaw and Davies (1964). The paper

by Berman and Clay (1957) together with the subsequent paper by Fakley
"(1959) provide a good discussion of multiplicative arrays.

II
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CHAPTER XV

Future Developments

15.1 Adaptive Systems

At the present time active research is underway on the application of
self-adaptive techniques to acoustic signal processing. The phrase "self-
adaptive" covers a wide range of sophistication according as "self" refers to
the operator or to the equipment. For example, in the most simple form the

operator makes repeated measurements of the background noise spectra and

changes the threshold and, perhaps, other operating characteristics. At a more
sophisticated level the machine is programmed to perform this function auto-

0 ", ' matically and continuously. This is undoubtedly the lowest level of perform-

ance to which one can apply the expression self-adaptive.
Another elementary variation in adaptive processes is sequential decision.

In this approach, as pointed out before, the length of the sample is variable.
This added degree uf freedom enables one to set both the false alarm rate and

the probability of detection. Thus, instead of one graph like Fig. 7.4 for a
single sample length, one has a family of these graphs corresponding to the

duration of the sample.
"has A significant increase in sophistication is provided when the detector

has adjustable parameters, such as the coefficients of the correlation function
which can be adjusted to give optimum response for known input samples.

One realization of this system has been studied at Stanford Electronics Lab-

oratory (Hoff, 1962, Mays, 1963, and Hu, 1963) under the name ADALINE.
This word was formed from ADAptive LINEar, which refers to adaptive
threshold-logic circuits. Some of the circuits they have studied are similar in

form to the quantized version of the standard detector shown in Fig. 10.1(b).
A more fundamental approach to adaptive networks has been pursued

at Cornell University by Rosenblatt (1962) and his co-workers. They have

developed a device, the PERCEPTRON, which simulates the human neural
system. A significant feature of the PERCEPTRON is that the circuit utilizes
random connections. When a device is able to make internal changes auto-

matically, it is referred to as a self-organizing system. Such a system is more
sophisticated than the adaptive systems in which the changes must be made

by the human operator.
A system that is intermediate in complexity is under development by

Sebestyen (1962) and his associates at Litton Industries. In this approach the

254
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"- -detector is able automatically to partition the observation space on the basis
of known inputs. This is equivalent to finding empirically the decision func-
tion 8(,y I V) which maps the message space r on to the decision space A.

The material presented in this book has dealt solely with hypothesis
testing as applied to the question of the presence or absence of a signal. Never-
theless, the important problem of parameter estimation, such as estimates of
range and bearing, can be treated, happily, with equal confidence. Less satis-
factory is the problem of target classification. A practical and reliable solu-
tion to this problem could lead to a substantial reduction in the false alarm
rate., It is evident that this classification will require a much greater signal-to-
noise ratio since one must extract a much larger amount of information from
the signal.

The design of a system for target classification can be approached from
two ways. One can design a deterministic system in which the circuits are
"tailored in accordance with a set of criteria that a target is expected to satisfy.
For example, one may decide that a submarine has, say, four or five dominant
reflection points or "highlights" so that the output of a crosscorrelation
"should have not one but four or five peaks in a time interval governed by the
length and aspect of the submarine. This criterion is offered not as a solution
to the problem of target classification but as an example of the kind of criteria
that may be preset into the detector,

Alternately, one can build into the receiver an ability to evaluate a set of
criteria but leave the threshold values associated with these criteria to be de-
termined by the receiver, The receiver is trained or taught by presenting to it
"a series of messages which are known to contain or not to contain signals. For
example, in a Bayes detection system the threshold K of Eq. (8.29) would be
determined as follows. A large number of messages would be presented to the
receiver and after each message the machine would be told whether or not a
signal was present. Thus, in essence, a large number of experimental points
would be located in the message space and each point would have a lable "yes"
or "no." The receiver then endeavors to construct a surface in this space which
provides the best separation of the "yes" points from the "no" points. After
this surface has been determined adequately, the receiver is able to judge un-
known messages and provide answers to the problem of signal detection.
Sebestyer (1962) has described this process in considerable detail.

An interesting application for learning device', can be conceived in con-
nection with bottom bounce sonar. Perhaps a self-adaptive receiver can be
trained to utilize the output of the depth sounder to predict the quality of
signals reflected from the ocean bottom. This would provide a continuous
assessment of the reliability of this mode of sonar operation. This problem
is not unlike that of teaching a computer to make weather forecasts (Hu,
1963).

-I•
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15.2 Developments in Modem Computer Technology

Undoubtedly the most important developments for signal processing are
those that have occurred in the area of computer technology. Fundamental in
this development are the solid circuit modules which have provided computers
which are much smaller and at the same time much faster. This development

has made possible the modern technique known as shared time, in which sev-
eral users can solve their problems simultaneously on the same computer. The
significance of this for military purposes is immediately obvious. By pooling
together the computer requirements for sonar, radar, fire control, and naviga-
tion one can install on each ship a large computer that can be shared by all.

The increased computer capacity that is achieved in this manner can be
used by the sonar operator to compute correlatioi, matrices such as those of
Eq. (12.12), predict quality of bottom reflected echoes, and perform other
calculations that are needed to keep his receiver operating in an optimum
manner.

"Another advantage of this foreseeable increase in computer capability
is that one can quantize signal levels in more levels than the two provided by
shift registers. There is a large gap between the performance of two-level quan-
tization and the infinite, or continuous, quantMiation, yet as Professor Bonnet
has shown, a modest increase in the number of quantization levels will signifi-
cantly close this gap.

The use of solid circuit modules in the receiver will lead to significant
changes in the approach to circuit designs. One will be more concerned with
circuit failures since it will be more difficult, if not impossible, to replace
individual elements in the circuits. This will give rise to an increase in the
use of redundancy and multiple path logic in the circuits.

15.3 Rearrangement of the Spatial and the Time Processing

It is customary in sonar systems to separate completely those operations
which livolve the spatial array, i.e., operations of beam formation, from those
operations in the time domain, such as filtering and crosscorrelation. It is
easy to see why this has been done, but it is not evident that this separation
"leads to an optimum system. As a matter of fact, this separation will be com-
plete only if the hydrophones are small in size. The output of a finite hydro-
phone already contains a superposition in time for any signal that arrives from
a diuection that is not normal to the face of the hydrophone. It is likely that
future designers of large sonar arrays will examine more closely the question
of the optimum organization of the spatial and temporal processing.

The interplay between the spatial and the temporal processing has ben
considered by Middleton and Groginsky (1963, 1965) for a passive receiver.
They introduce the definition that the receiver will be said to be factorable if

,,/:
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the processing can be represented as a product of operators depending only on
the array and operators depending only on the statistics of the signal and the
noise They proceed to show for some situations whether or not the optimum
receiver is factorable. The results of this kind of analysis are clearly important
because the conventional method of beam formation will lead to a loss of per-
formance unless the optimum receiver is factorable.

15.4 Oceanographic Surveys

The steady increase in the knowledge of the ocean that results from the
many survey programs in progress will contribute significantly to the problem
of signal processing. The designer will be requiied less often in the future to
assume the statistics for the noise, and the nature of the degradation of the
"signal resulting from reflection and propagation will be better understood.'_,, Instead, he can determine the receiver characteristics that are optimum for

each part uf the ocean. For example, in the case of bottom bounce sonar, as
the signal characteristics are progressively degraded due to an increase Li the
roughness of the bottom, one may want to change the receiver from a corre-
lation receier to a simple energy detector. j
15.5 Suggestions for Further Reading

Basic reference for the reader are the books by Rosenblatt (1962) and
Sebestyen (1962). A report edited by Wilcox (1964) contains a large number
of very brief summaries of the present state of the many fields covered by, the
term "information sciences." This report is a useful guide to the literature.

The current research in the field of artificial intelligence and automata

have not reached the stage of development where they are of immediate ap-
plicability to sonar systems. Nonetheless, these fields are of long range inter-
est and the work is of great intrinsic interest independent of its practical po-

tential. The ri.dder is referred to a book Automata Studies edited by Shannon
and McCarthy (1956) and the Proceedings of the IFIP Congress 65 edited by
Kalenich (1965) for many interesting papers. The latter book contains ma-
terial on the prr~ent and future status of large computers.
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ANSWERS TO SOME OF THE PROBLEMS

2.1 (a) (f) = (+i2rf7)-'
h(t) 0, t<0

- (1/7) exp(-t/T), t > 0.
(b) 17(f) = iirIT(l+i2frf7-'

h(t) = 5(t), t<06 (t) - (1/7") exp(-t/7), t > 0.

(c) Y(J) = l1+iQ(-

h(t) O,t<O
- 47rftano cos(27fo cosot - 0) exp(-27Tfo sinot)

where
• Coto =" (4Q2_1)%

2.2 (a) E0,t() = O,t<O

= Ef{1-.exp(-t/7)}, 0 < t < T,
= Eo{exp(Tr/7)-1} exp(-t/7), Ti < t.

(b) 0.214

2.3 (a) The output may be imaginary. There may be an output before
there is an input,

(b) Restrict the given definition of YU) to positive frequencies and
define Y(-f) = Y*(+.).

2.5 Hl(f) = l/2irf

2.6 No. The Fourier integral will give the correct answer if it is deformed
below the origin f = 0.

2.7 4

2.10 4'2('d, fd) exp{-{nfd/a)2 
- (ad)2 1}..

3.3 Clipping decreases the normalized autocorrelation function.

3.6 1 1 2) [xI 2 -2pxIx 2 +x2
21

fxIX 2) - 2iox/: e 2 6(1-P
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ANSWERS TO SOME OF THE PROBLEMS 267

4.4 (a) E(T)/Wo'I = (27)"4
(b) E(T)/oE = ir'h -/vev {1-4(v)}'A

where
•:'e, v = a/Vf2- T and F(D ) is the error integral.

4.6 (a) E{x} = 1/12
(b) E{x2 } = 15/32.
(c) f(x) 0 x<-I

ffx) = 2(1+x)-I <x<-112
j(x) = (1/4) 6(x + 1/2),-1/2- <x <-1/2+e
fAx) = 0-1/2<x<+1/2
Ax) 1l/2<x<l
ITx) = 01 <x

4.7 (c) The difference is that in the present case the phases are correlated
so that amplitudes must be summed.

5.1 ThemodeisR u. E{R} = wNft

E{R2} = 20.

5.2 (a) The prior probability, P(w)

w 10 1 2 3 4
P(w) 3/40 10/40 14/40 1040 3/40

(b) The posterior probability, P(z = 0 I w), that z = 0 given w.

w 0 1 2 3 4
P(z0 Iw) 1.0 0.7 0.5 0.3 0

5.12 p(s) f(r, r/s) Ir/s' Idr

5.13 (a) p(s) = (I/7) Ia,, ' {aI Is2 + 2a, 2s+a 22} '

(b) E{s} = -a, 2/a 1.,

5.17 JUN(tO = o2PVtl)s(t2)

7.1 +0
(a) G(t) =_FEi(-r)f2(t-T-T) dT

where S2(t) is the Fourier transform of [W(f)lF

I -. .. .. . . ... \-. .' ..



268 SIGNAL PROCESSING OF UNDERWATER ACOUSTIC WAVES

7.8 No. These two errors do not exhaust the possible combinations of like- 4
lihood ratios and hypotheses.

8.3M

Mn A Q(p/q) + ama Vm Vn-M

9.5 (b) 8.6 deg

k

II

I+-.'-
I

I

r - jI



NAME INDEX

Alexander, M. J., 215, 258 Davenport, W. B., Jr., 97, 114, 126,
Allen, W. B., 200, 235, 258 260
Anderson, V., C., 177, 235, 258 Davies, D. E. N., 253, 263
Arase, E. M., 172, 258 Dirac, P. A. M., 144, 260
Arase, T., 172, 258 Doob, J. L., 47, 59, 62, 260
Arqu'es, P. Y,. iii Duflos, J., 114, 260
Axelrod, E. H., 168, 258 Dwork, B. M., 117, 118, 260

Bartlett, M. S., 62, 73, 258 Eckart, C., 97, 260
Beckmann, P., 14, 258 Engelsen, 1., in, 172
Bendat, J. S., 258 Erdelyi, A.. 32, 260
Beran, M. J.., 18, 32, 258
Berman, A.,. 200, 253, 258 Fakley, D. C., 200, 253, 260
Birdsall, T. G., 155, 158, 258, 26" Faran, J. J., 170, 177, 260
Blackman, N. M., 77, 78 Faure, P., 14, 260
Blackman, R. B., 110 Fisher. R A, 97, 238,. 261
Rlackwell, D., 258 Flinn, E. A ,, 14, 261
Bla ic-Lapierre, A., 62, 25, Fortet, R.. 62, 259

-" - Bon -et, in.,, 13, 51, 114, 176, 200, Fos,et R NI., 32, 259
-256, 259 Fox, G. R., 16?, '68, 261

Born, M.,. 27, 28, 32, 259 Fox, 'A. C., 158, 263
Brekhovskikh, L. M.,. 13, 259 Freemaa, J J..., 205. 261
Bremmer, H., 24, 264
SBrownyard, T. L., iGabor, D., 23, 32, 261
Bruce, A., i Ganton, J. H , 58, 262
Bryn, F., in, 81,, 155,. 172, 234, 235, Gibbs, J. W.., 43, 48

259 Girshick, NI A., 258
Goldman, S., 112, 114

Campbell, G. A, 32, 259 Goodman, N R.,, 215, 261
Capon, J., 14, 259 Green, M., 136, 261
Chandrasekhar, S., 87, 259 Green, P. E., Jr., 28, 30, 32, 261
Chernov, L A., 14, 259 Greenfield, R. J., 259
Clay, C. S ,,13, 14, 200, 253, 258,. Groginsky, H L., 235, 256, 262

259, 264 Guillemin, E. A., 18, 32,. 261
Cooley, J. W., 114, 259
Cramer, If.. 47, 62, 73, 87, 97, 140 llannan, E. J., 62, 261

210, 212, 238, 239, 241, 260 Helstrom, C. W, 13, 127, 158, 261
Cron,. B. F'., -8. 260 1lills, R., 170, 177, 260

269

• , \ h i
.- S



270 SIGNAL PROCESSING OF UNDERWATER ACOUSTIC WAVES

Hoff, M. E., 254, 261 Parrent, G. B., Jr., 18, 32, 258
Honnest-Redlich, G., 144, 261 Peirce, B. 0., 56, 63, 263
Hu, M. J , 254, 255, 261 Pekeris, C. L., 263

'a" Hunt, FV., 177, 261 Peterson, W. W., 158, 263
Picinbono, B., 62, 259

Jeffreys, H., 97, 159, 261 Price, R., 28, 32, 263
Johnson, R. A., 260

Raleigh, Lord or Baron, 66, 94,
Kalenich, W. A., 257, 261 3
Kendall, M. G., 87, 97, 261 .ent, P. G., iii, 252
Khinchin, A. 1., 49, 261 Rice, S. 0., 58, 97, 195, 263
Khmtchine, A., 66, 262, see Risness, E. J., iii

Khinchin, A. Root, W, L , 97, 126, 260

Kohlenberg, A., 113, 114, 262 Rosenblatt, F., 254, 257, 263I Kollker, R. J., 259 Rosenblatt, M., 215, 263

Kolmogorov, A. N., 74, 262 Rudnick, P., 155, 177, 182, 184,
Kooij, T., iii 187, 188, 200, 218, 235, 263

Laval, R., hi Saks, S., 68, 263

Lerner, R. A., 32, 262 Schiff, L. 1., 144, 263
Levy, P., 262 Schooner, B. A., 258

Lionette, H. M., 170, 172, 262 Schuster, A., 66
Loive, M., 62, 262 Schultheiss, P. M., 170, 260

Screaton, G., R., 28, 263

McCarthy, J., 257, 263 Sebestyen, G. S., 145, 254, 255,

McDonald, R. A., 260 257, 263
Magnus, W., 260 Shannon, C. E., 109, 257, 263

Mays, C. H., 254, 262 Shaw, E., 253, 263
Shor, S. W. W., iii, iv, 235Mermoz, H., iii, 120, 214, 218, 232, Sier, W. M., 13, 32, 264235,262Siebert, W. M., 13, 32, 264

Middleton, D., iii, 13, 52, 62, 77, Smith, Carey D., iv
109, 124, 127, 143, 147, 149, 155, Spencer, R. C., 245, 264

158, 205, 215, 235, 256, 260, 262, Spizzichino, A., 14, 258
265 Stewart, J. L., 32, 264

Milne, A. R.,. 58, 262 Stocklin, P. L., 114, 264

Moll, M., ill Stone, J., 167, 264
Stratton, J. A., 250, 264

Nelson, Patricia, m Swets, A., 136, 261
Nuttall, A. H., 28, 260

Oberhettinger, F., 260 Talham, R. J., 168, 172, 264
Officer, C. B., 13, 262 Thomas, J. B., 187, 200, 264
Ol'shevskii, V. V., 14, 263 Thompson, R. J., 170, 172, 262



A 
-

NAME-INDEX 271

Titchmarsh, E. C., 18, 19, 27, 32, von Neuman, J., 148
5,87,6 Von Winkle, W. A., 258

Tolstoy, 1., 13, 264

Tricomi, F. G., 260 Wald, A., 1, 149, 158, 265

Tucker, D. G., 13, 170, 176, 249, Watson, G, N., 69, 265

251,253, 264, 265 Webb, E. L. R., 92, 265

Tukey, J. W., 110, 114, 258, 259 Webster, F., 112, 265

Turin, G. L., 124, 264 Welsby, V. G., 170, 176, 249, 251,

Tuteur, F. B., 260 253,265
Westerfield, E. C., iii, 32, 177, 200,

Usher, T., Jr., 170, 177, 192, 198, 235,258,264

199, 200, 260, 264 Whittaker, E. T., 69, 265
Widder, D, V., 70, 265

0 van der Pol, B., 24, 264 Wiener, N., 49, 53, 66, 265

Van Melle, F. A., 14, 264 Wilcox, R. H., 257, 265

Van Meter, D., 13, 143, 146, 158, Williams. T. R., 187, 200, 264

262, 265 Wilson, H. A., iii

van Schooneveld, C., iii, 32, 114. 265 Wolf, E., 27, 28, 32, 259

Van Vleck, J. H., 62, 124, 265 Woodward, P. M., 13, 28, 30,32,86,

Vok, C. A., 215, 258 97, 265

* ,. -.



J4

SUBJECT INDEX

ADALINE, 254 Central second order moments, 57

Adaptive systems, 254 CEPHAG, 176

Ambient noise, directional proper- Characteristic function, 86

ties of sea surface, 172 for the sum of two independent

Ambiguity function, 28, 29, 32 variables, 88
illustrations of, 31 Chi-square probability density, 91

Analytic signal, 27, 114 Clipping, effect on receiver per-

Answers to problems, 266 formance, 193

Array gain, 188 Coherent reflection, 9

Arrays, theory of acoustic planar, Coherent signal processing, con-

242 trasted with incoherent proc-

Attenuation, 8 essing, 126, 157

Autocorrelation function, normal-, Coherent threshold detection. 156

ized, 55 Coherent versus incoherent detec-

second derivative of. 195 tion, narrov,-band correlation

Autocovariance, 52 detector, 126

Autocovariance function, cduped Computer, use of to analyze system

gaussian noise, 60 performance, 175

Fourier ti ansform of power spec- Conditional loss rating, 147

trum, 67 Conditional probability, 85
Conditional risk, 147, 148

Baffle, assumption of rigid, 243 Convltion , 19
Bandwidth and signal length, 22 Cornell University, 254

Bayes class of decision functions, Correlation f-,nction, 52
149

Bayes decision rule, 149, 154 examples of, 74
multidimensional filters, 213

signal detection with two hypoth- Correlation receiver, experimental
eses, 154 data from, 172-173

Bayes detection system, 255 dt rm 7-7
Bayes rtcisk, 149Correlation matrix, conditions on,Bayes risk, 14920

Bayes systems, 148, 149,. 176
Bayes theorem, 85, 86, 97 definition of, 208
Bibliography, 258 Cost, irreducible minimum of, 153
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Bunyakovsky inequality, 54 relation to military situation, 237
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Cauchy-Schwartz inequality, 54 208
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Decision function, 148, 149, 150, Fourier transforms, 18.32
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ordering of, 149 243
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"Delta function, 68, 70 gauss process, 56

DELTIC system, 177, 200

Detection, definition of, 1 Gauss process, 56, 59Gaussian process, distinguished from

known signal,. 116 gaussian distribution, 60
sequential, I

"Detection probabilty,. 134 Harvard Underwater Sound Labora-

definition of., 136 tory, 177
Detection systems, comparison of,. Harvard U1versity, 177
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Linear array, response to noise, 162. Noise. ambient, 4, 10, 58

166 in the ocem, 161

two hydrophones, 168 experimental results, 167, 172

two hydrophones, comparison Noise, description of, 3
line hydrophone, 170 nongaussian, 58

two hydrophones, response to sources of, 3
noise, 169 Normal distribution function, nota-

Litton 'i .lstries, 254 tion oý, 140
Loss function, 145, 147 Normalized autocorrelation func-

Loss rating, average unconditional, tion, 55
148 for a clippe6 gaussian noise, 62

Wyqui.t frequency, 110

Marginal distribution, 46, 48

Marine Physical Laboratory, 177 Observation space, 143, 145
Matched filter, 116, 123 Oceanography surveys, 257

definition of, 124 Orthonormal functions, 7?
Maximum likelihood, method of, Own Doppler Nullifier, 5

238
Maximum likelihood estimate, 238 Parseval formula, 19
Mean value of finite sample,comnpu- PERCEPTRON, 254

tation with RC network, 10 4 Periodic process, analytic represten-
ensemb,-e average of, 102 aino,7Atation of, 78
ensemble average of the square

probability density of amplitude,
103 ?

Message space, 145Moments, second order, 51 probability Aensity of coeffici-

Multipaths, distortion from, 9 ents, 81
Multiplicative arrays, 246, 249 Physical realizability, conditions for,21
Multiplicative detector, 188

comparison with standard detec- of correlation detec(or, 121-123
Posterior probability, 85, 86

to, 19detection based on, 132
Power density, average, 65, 66

Narrow-band gaussian noise, enve- output of multidimensional hy-
iope of, 96 drophones and filters, 222

used to simulatc reverberation, 97 Power spectrum, 65
Narrow-band signal, in correlation examples of, 74

detector, 124 Fourier trassform of autocovari-
Navy ElIctronics laboratory, 176, anc, function, 6

177 integrated, 72, 73

Network, linear, 20 multidimensional process, 210
generalized, 20, 21 Probability, prior, 85, 86, 130

Neumann, factor, 80 posterior, 12, 130
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Probability density, 43, 45 Sample value, 43
for a cosinusvida! surface, 88 Sampling errors caused by time in-
for A furý':%on of a randomn vari- terval between samples, 112-

,V able, Y4 113

for a fur'ction of two random Sampling in time, effect on receiver
variablim, 92 performance, 193

for the product of two random Sampling theorem, 109

variables, 92 Schwartz inequality, 54
for the product of two gaussian, complex functions, 208

random variables, 93 Seismic exploration, 4
for the sun' of two independent parameters of, 4, 5, 6

variables, 88 Self-adaptive systems, 254
Processing gain, definition of, 187 Sequential detection, 1

from post-rectification integra- Shot effect, 58
tion, 188 Signal, definition of, 2

Proper filter of the array, 232 Signal detection, as hypothesis de-
Pulse compression, 124 tection, 130

white noise signal in white noise
background, 157

Radar, parameters of, 4, 5, 6 Signal extraction, 2
Radiation patterns, as Fourier trans- Signal in additive gaussian noise, 156

forms, 242 Signal space, 143, 144, 145
Random processes, effects of finite Signal-to-noise ratio, 12, 118

sample length, 101 filter that maximizes, 118, 127

measurements of, 101 maximizing for a three dimen-
see stochastic processes sional 4rray, 218

Random variable, 43, 46, 47 standard detector, 187

definition of, 47 Snell's law, 14
Random walks, problem of, 94, 99 SOFAR channel, 7
Rayleigh distribution, 94, 96 Sonar, active, 1
Rays, acoustic, 6 bottom bounce, 255

electromagnetic, 6 parameters of, 4, 5, 6
Recognition differential, 8 passive, 1
Receiver operating characteristics, range equation, 7, 8

definition of, 136 sum and difference, 249
example of, 140 Source level, 8

Reverberation, 4, 10 Spatial processing, comments on,
surfcce, 10 256
volume, 10 Square law device, 90

Riemann integral, 18, 50, 69, 70 Square law rectifier with low-pass
Riemann-Stieltjes integral, 70 RC network, ensemble aver-
Risk, 147 age, 106

average, 146, 149, 151, 153 fluctuations o6 o.tput, 106-109
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Standard detector, 177 Three-dirmensional arrays, 175
comparison of performance with Threshold, 155

and without clipping, 199 deteTmination of, 237
t, off-target response, 182 for the likelihood ratio, 132

on-target response, 182 Time average, 42, 50
with perfect clipping, 196 Time correlation function, 52, 53

Standard deviation, 53 Time series, continuous, 42

Standard Electronics Laboratory, discrete, 42
254 stochastic, 42

Stationary process, wide sense, 53, TW-product, see WT-product
56 Type I error, 135

Stationary time series, strict sense, Type II error, 135
49

Stieltjes integral, .0, 68, 70, 72 Uncertainty principle, 23
Stochastic fields, 9 Unit step function, 40

-• ',~ Stochastic process, 42, 46, 47 University of Birmingham, 176, 253
analytic representation of, 75 Velocity gradients, 6
definition of, 47
multidimensional, 207 Wave duct, 6, 7

Superdirective array, 246 White Poise, 74
Wiener-Khintchine formulas, or the-

Target classification, 1, 255 orem, 72, 80, 81

Target strength, 7, 8 WT-product, 22, 25, 30
"Target velocities, 6
Temperature gradients, 6 Zeros, number per second, 195
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